
The VTK-m User's Guide
Release 2.1.0-241-g98168fc2

Kenneth Moreland

May 15, 2024

VTK-M USER’S GUIDE

I Getting Started 3

1 Introduction 5

2 Building and Installing VTK-m 9

3 Quick Start 17

II Using VTK-m 23

4 Base Types 25

5 VTK-m Version 33

6 Initialization 35

7 Data Sets 39

8 File I/O 77

9 Running Filters 83

10 Provided Filters 93

11 Rendering 163

12 Error Handling 203

13 Managing Devices 207

14 Timers 215

15 Implicit Functions 219

III Developing Algorithms 229

16 General Approach 231

17 Basic Array Handles 235

18 Simple Worklets 247

i

19 Basic Filter Implementation 253

IV Advanced Development 263

20 Advanced Types 265

21 Logging 309

22 Worklet Types 317

23 Extended Filter Implementations 355

24 Worklet Error Handling 367

25 Math 369

26 Working with Cells 389

27 Memory Layout of Array Handles 407

V Core Development 425

VI Appendix 427

28 Acknowledgements 429

29 License 431

30 Index 433

Index 435

ii

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The VTK-m User’s Guide
Version 2.1.0-241-g98168fc2

Kenneth Moreland

with special contributions from Vicente Bolea, Hank Childs, Nickolas Davis, Mark Kim, James Kress, Matthew Letter,
Li-Ta Lo, Robert Maynard, Sujin Philip, David Pugmire, Nick Thompson, Allison Vacanti, Abhishek Yenpure, and the
VTK-m community

Moreland, K. (2023). The VTK-m User’s Guide, Tech report ORNL/TM-2023/3182, Oak Ridge National Laboratory.

Join the VTK-m Community at http://m.vtk.org.

VTK-M USER’S GUIDE 1

http://m.vtk.org

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

2 VTK-M USER’S GUIDE

Part I

Getting Started

3

CHAPTER

ONE

INTRODUCTION

High-performance computing relies on ever finer threading. Advances in processor technology include ever greater
numbers of cores, hyperthreading, accelerators with integrated blocks of cores, and special vectorized instructions, all
of which require more software parallelism to achieve peak performance. Traditional visualization solutions cannot
support this extreme level of concurrency. Extreme scale systems require a new programming model and a fundamental
change in how we design algorithms. To address these issues we created VTK-m: the visualization toolkit for multi-
/many-core architectures.

VTK-m supports a number of algorithms and the ability to design further algorithms through a top-down design with
an emphasis on extreme parallelism. VTK-m also provides support for finding and building links across topologies,
making it possible to perform operations that determine manifold surfaces, interpolate generated values, and find adja-
cencies. Although VTK-m provides a simplified high-level interface for programming, its template-based code removes
the overhead of abstraction.

5

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Table 1: Comparison of Marching Cubes implementations.

CUDA SDK VTK-m
431 LOC 265 LOC

VTK-m simplifies the development of parallel scientific visualization algorithms by providing a framework of sup-
porting functionality that allows developers to focus on visualization operations. Consider the listings in Table 1 that
compares the size of the implementation for the Marching Cubes algorithm in VTK-m with the equivalent reference
implementation in the CUDA software development kit. Because VTK-m internally manages the parallel distribution
of work and data, the VTK-m implementation is shorter and easier to maintain. Additionally, VTK-m provides data
abstractions not provided by other libraries that make code written in VTK-m more versatile.

1.1 How to Use This Guide

This user’s guide is organized into 5 parts to help guide novice to advanced users and to provide a convenient reference.
Part I (Getting Started) provides a brief overview of using VTK-m. This part provides instructions on building VTK-m
and some simple examples of using VTK-m. Users new to VTK-m are well served to read through Part Part I (Getting
Started) first to become acquainted with the basic concepts.

The remaining parts, which provide detailed documentation of increasing complexity, have chapters that do not need
to be read in detail. Readers will likely find it useful to skip to specific topics of interest.

6 Chapter 1. Introduction

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Part II (Using VTK-m) dives deeper into the VTK-m library. It provides much more detail on the concepts introduced
in Part I (Getting Started) and introduces new topics helpful to people who use VTK-m’s existing algorithms.

Part III (Developing Algorithms) documents how to use VTK-m’s framework to develop new or custom visualization
algorithms. In this part we dive into the inner workings of filters and introduce the concept of a worklet, which is the
base unit used to write a device-portable algorithm in VTK-m. Part III (Developing Algorithms) also documents many
supporting functions that are helpful in implementing visualization algorithms.

Part IV (Advanced Development) explores in more detail how VTK-m manages memory and devices. This information
describes how to adapt VTK-m to custom data structures and new devices.

Part V (Core Development) exposes the inner workings of VTK-m. These concepts allow you to design new algorithmic
structures not already available in VTK-m.

Did You Know?

In this guide we periodically use these Did you know? boxes to provide additional information related to the topic at
hand.

Common Errors

Common Errors blocks are used to highlight some of the common problems or complications you might encounter
when dealing with the topic of discussion.

1.1. How to Use This Guide 7

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

8 Chapter 1. Introduction

CHAPTER

TWO

BUILDING AND INSTALLING VTK-M

Before we begin describing how to develop with VTK-m, we have a brief overview of how to build VTK-m, optionally
install it on your system, and start your own programs that use VTK-m.

2.1 Getting VTK-m

VTK-m is an open source software product where the code is made freely available. To get the latest released version
of VTK-m, go to the VTK-m releases page:

https://gitlab.kitware.com/vtk/vtk-m/-/releases

From there with your favorite browser you may download the source code from any of the recent VTK-m releases in a
variety of different archive files such as zip or tar gzip.

For access to the most recent work, the VTK-m development team provides public anonymous read access to their main
source code repository. The main VTK-m repository on a GitLab instance hosted at Kitware, Inc. The repository can
be browsed from its project web page:

https://gitlab.kitware.com/vtk/vtk-m

We leave access to the git hosted repository as an exercise for the user. Those interested in git access for the purpose
of contributing to VTK-m should consult the CONTRIBUTING guidelines documented in the source code.

2.2 Configuring VTK-m

VTK-m uses a cross-platform configuration tool named CMake to simplify the configuration and building across many
supported platforms. CMake is available from many package distribution systems and can also be downloaded for
many platforms from http://cmake.org.

Most distributions of CMake come with a convenient GUI application (cmake-gui) that allows you to browse all
of the available configuration variables and run the configuration. Many distributions also come with an alternative
terminal-based version (ccmake), which is helpful when accessing remote systems where creating GUI windows is
difficult.

One helpful feature of CMake is that it allows you to establish a build directory separate from the source directory, and
the VTK-m project requires that separation. Thus, when you run CMake for the first time, you want to set the build
directory to a new empty directory and the source to the downloaded or cloned files. The following example shows the
steps for the case where the VTK-m source is cloned from the git repository. (If you extracted files from an archive
downloaded from the VTK-m web page, the instructions are the same from the second line down.)

9

https://gitlab.kitware.com/vtk/vtk-m/-/releases
https://gitlab.kitware.com/vtk/vtk-m
https://gitlab.kitware.com/vtk/vtk-m/blob/master/CONTRIBUTING.md
http://cmake.org

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 1: Running CMake on downloaded VTK-m source (Unix com-
mands).

tar xvzf ~/Downloads/vtk-m-v2.1.0.tar.gz
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtk-m-v2.1.0

Figure 1: The CMake GUI configuring the VTK-m project. At left is the initial blank configuration. At right is the
state after a configure pass.

The first time the CMake GUI runs, it initially comes up blank as shown at left in Figure 1. Verify that the source and
build directories are correct (located at the top of the GUI) and then click the Configure button near the bottom. The
first time you run configure, CMake brings up a dialog box asking what generator you want for the project. This allows
you to select what build system or IDE to use (e.g. make, ninja, Visual Studio). Once you click Finish, CMake will
perform its first configuration. Don’t worry if CMake gives an error about an error in this first configuration process.

Common Errors

Most options in CMake can be reconfigured at any time, but not the compiler and build system used. These must be set
the first time configure is run and cannot be subsequently changed. If you want to change the compiler or the project
file types, you will need to delete everything in the build directory and start over.

After the first configuration, the CMake GUI will provide several configuration options as shown in Figure 1 on the
right. You now have a chance to modify the configuration of VTK-m, which allows you to modify both the behavior of
the compiled VTK-m code as well as find components on your system. Using the CMake GUI is usually an iterative
process where you set configuration options and re-run Configure. Each time you configure, CMake might find new
options, which are shown in red in the GUI.

It is often the case during this iterative configuration process that configuration errors occur. This can occur after a
new option is enabled but CMake does not automatically find the necessary libraries to make that feature possible. For
example, to enable TBB support, you may have to first enable building TBB, configure for TBB support, and then tell

10 Chapter 2. Building and Installing VTK-m

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

CMake where the TBB include directories and libraries are.

Once you have set all desired configuration variables and resolved any CMake errors, click the Generate button. This
will create the build files (such as makefiles or project files depending on the generator chosen at the beginning). You
can then close the CMake GUI.

There are a great number of configuration parameters available when running CMake on VTK-m. The following list
contains the most common configuration parameters.

BUILD_SHARED_LIBS

Determines whether static or shared libraries are built.

CMAKE_BUILD_TYPE

Selects groups of compiler options from categories like Debug and Release. Debug builds are, obviously, easier
to debug, but they run much slower than Release builds. Use Release builds whenever releasing production
software or doing performance tests.

CMAKE_INSTALL_PREFIX

The root directory to place files when building the install target.

VTKm_ENABLE_EXAMPLES

The VTK-m repository comes with an textfilename{examples} directory. This macro determines whether they
are built.

VTKm_ENABLE_BENCHMARKS

If on, the VTK-m build includes several benchmark programs. The benchmarks are regression tests for perfor-
mance.

VTKm_ENABLE_CUDA

Determines whether VTK-m is built to run on CUDA GPU devices.

VTKm_ENABLE_KOKKOS

Determines whether VTK-m is built using the Kokkos portable library. Kokkos, can be configured to support
several backends that VTK-m can leverage.

VTKm_ENABLE_MPI

Determines whether VTK-m is built with MPI suppoert for running on distributed memory clusters.

VTKm_ENABLE_OPENMP

Determines whether VTK-m is built to run on multi-core devices using OpenMP pragmas provided by the C++
compiler.

VTKm_ENABLE_RENDERING

Determines whether to build the rendering library.

VTKm_ENABLE_TBB

Determines whether VTK-m is built to run on multi-core x86 devices using the Intel Threading Building Blocks
library.

VTKm_ENABLE_TESTING

If on, the VTK-m build includes building many test programs. The VTK-m source includes hundreds of regres-
sion tests to ensure quality during development.

VTKm_ENABLE_TUTORIALS

If on, several small example programes used for the VTK-m tutorial are built.

VTKm_USE_64BIT_IDS

If on, then VTK-m will be compiled to use 64-bit integers to index arrays and other lists. If off, then VTK-m
will use 32-bit integers. 32-bit integers take less memory but could cause failures on larger data.

2.2. Configuring VTK-m 11

https://kokkos.github.io/kokkos-core-wiki/

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

VTKm_USE_DOUBLE_PRECISION

If on, then VTK-m will use double precision (64-bit) floating point numbers for calculations where the precision
type is not otherwise specified. If off, then single precision (32-bit) floating point numbers are used. Regardless
of this setting, VTK-m’s templates will accept either type.

2.3 Building VTK-m

Once CMake successfully configures VTK-m and generates the files for the build system, you are ready to build VTK-m.
As stated earlier, CMake supports generating configuration files for several different types of build tools. Make and
ninja are common build tools, but CMake also supports building project files for several different types of integrated
development environments such as Microsoft Visual Studio and Apple XCode.

The VTK-m libraries and test files are compiled when the default build is invoked. For example, if a Makefile was
generated, the build is invoked by calling textfilename{make} in the build directory. Expanding on Example 1

Example 2: Using make to build VTK-m.

tar xvzf ~/Downloads/vtk-m-v2.1.0.tar.gz
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtk-m-v2.1.0
make -j
make install

Did You Know?

Makefile and other project files generated by CMake support parallel builds, which run multiple compile steps simul-
taneously. On computers that have multiple processing cores (as do almost all modern computers), this can significantly
speed up the overall compile. Some build systems require a special flag to engage parallel compiles. For example, make
requires the -j flag to start parallel builds as demonstrated in Example 2.

Did You Know?

Example 2 assumes that a make build system was generated, which is the default on most system. However, CMake
supports many more build systems, which use different commands to run the build. If you are not sure what the
appropriate build command is, you can run cmake --build to allow CMake to start the build using whatever build
system is being used.

Common Errors

CMake allows you to switch between several types of builds including default, Debug, and Release. Programs and
libraries compiled as release builds can run much faster than those from other types of builds. Thus, it is important
to perform Release builds of all software released for production or where runtime is a concern. Some integrated
development environments such as Microsoft Visual Studio allow you to specify the different build types within the
build system. But for other build programs, like make, you have to specify the build type in the CMAKE_BUILD_TYPE
CMake configuration variable, which is described in Section 2.2 (Configuring VTK-m).

CMake creates several build “targets” that specify the group of things to build. The default target builds all of VTK-m’s
libraries as well as tests, examples, and benchmarks if enabled. The test target executes each of the VTK-m regression
tests and verifies they complete successfully on the system. The install target copies the subset of files required to

12 Chapter 2. Building and Installing VTK-m

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

use VTK-m to a common installation directory. The install target may need to be run as an administrator user if the
installation directory is a system directory.

Did You Know?

VTK-m contains a significant amount of regression tests. If you are not concerned with testing a build on a given
system, you can turn off building the testing, benchmarks, and examples using the CMake configuration variables
described in Section 2.2 (Configuring VTK-m). This can shorten the VTK-m compile time.

2.4 Linking to VTK-m

Ultimately, the value of VTK-m is the ability to link it into external projects that you write. The header files and libraries
installed with VTK-m are typical, and thus you can link VTK-m into a software project using any type of build system.
However, VTK-m comes with several CMake configuration files that simplify linking VTK-m into another project that
is also managed by CMake. Thus, the documentation in this section is specifically for finding and configuring VTK-m
for CMake projects.

VTK-m can be configured from an external project using the find_package() CMake function. The behavior
and use of this function is well described in the CMake documentation. The first argument to find_package() is
the name of the package, which in this case is VTKm. CMake configures this package by looking for a file named
VTKmConfig.cmake, which will be located in the lib/cmake/vtkm-<VTKm version> directory of the install or
build of VTK-m. The configurable CMake variable CMAKE_PREFIX_PATH can be set to the build or install direc-
tory, the CMAKE_PREFIX_PATH environment variable can likewise be set, or cmakevar{VTKm_DIR} can be set to the
directory that contains this file.

Example 3: Loading VTK-m configuration from an external CMake
project.

find_package(VTKm REQUIRED)

Did You Know?

The CMake find_package() function also supports several features not discussed here including specifying a mini-
mum or exact version of VTK-m and turning off some of the status messages. See the CMake documentation for more
details.

When you load the VTK-m package in CMake, several libraries are defined. Projects building with VTK-m components
should link against one or more of these libraries as appropriate, typically with the target_link_libraries()
command.

Example 4: Linking VTK-m code into an external program.

find_package(VTKm REQUIRED)

add_executable(myprog myprog.cxx)
target_link_libraries(myprog vtkm::filter)

Several library targets are provided, but most projects will need to link in one or more of the following.

vtkm::cont

Contains the base objects used to control VTK-m.

2.4. Linking to VTK-m 13

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter

Contains VTK-m’s pre-built filters. Applications that are looking to use VTK-m filters will need to link to this
library. The filters are further broken up into several smaller library packages (such as vtkm::filter_contour,
:cmake:variable`vtkm::filter_flow`, vtkm::filter_field_transform, and many more. vtkm::filter is
actually a meta library that links all of these filter libraries to a CMake target.

vtkm::io

Contains VTK-m’s facilities for interacting with files. For example, reading and writing png, NetBPM, and VTK
files.

vtkm::rendering

Contains VTK-m’s rendering components. This library is only available if VTKm_ENABLE_RENDERING is set to
true.

vtkm::source

Contains VTK-m’s pre-built dataset generators suchas Wavelet, Tangle, and Oscillator. Most applications will
not need to link to this library.

Did You Know?

The “libraries” made available in the VTK-m do more than add a library to the linker line. These libraries are actually
defined as external targets that establish several compiler flags, like include file directories. Many CMake packages
require you to set up other target options to compile correctly, but for VTK-m it is sufficient to simply link against the
library.

Common Errors

Because the VTK-m CMake libraries do more than set the link line, correcting the link libraries can do more than fix
link problems. For example, if you are getting compile errors about not finding VTK-m header files, then you probably
need to link to one of VTK-m’s libraries to fix the problem rather than try to add the include directories yourself.

The following is a list of all the CMake variables defined when the textcode{find_package} function completes.

VTKm_FOUND

Set to true if the VTK-m CMake package is successfully loaded. If find_package() was not called with the
REQUIRED option, then this variable should be checked before attempting to use VTK-m.

VTKm_VERSION

The version number of the loaded VTK-m package. This is in the form “major.minor”.

VTKm_VERSION_FULL

The extended version number of the VTK-m package including patch and in-between-release information. This
is in the form “major.minor.patch[.gitsha1]” where “gitsha” is only included if the source code is in between
releases.

VTKm_VERSION_MAJOR

The major VTK-m version number.

VTKm_VERSION_MINOR

The minor VTK-m version number.

VTKm_VERSION_PATCH

The patch VTK-m version number.

14 Chapter 2. Building and Installing VTK-m

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

VTKm_ENABLE_CUDA

Set to true if VTK-m was compiled for CUDA.

VTKm_ENABLE_Kokkos

Set to true if VTK-m was compiled with Kokkos.

VTKm_ENABLE_OPENMP

Set to true if VTK-m was compiled for OpenMP.

VTKm_ENABLE_TBB

Set to true if VTK-m was compiled for TBB.

VTKm_ENABLE_RENDERING

Set to true if the VTK-m rendering library was compiled.

VTKm_ENABLE_MPI

Set to true if VTK-m was compiled with MPI support.

These package variables can be used to query whether optional components are supported before they are used in your
CMake configuration.

Example 5: Using an optional component of VTK-m.

find_package(VTKm REQUIRED)

if (NOT VTKm::ENABLE::RENDERING)
message(FATAL_ERROR "VTK-m must be built with rendering on.")

endif()

add_executable(myprog myprog.cxx)
target_link_libraries(myprog vtkm::cont vtkm::rendering)

2.4. Linking to VTK-m 15

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

16 Chapter 2. Building and Installing VTK-m

CHAPTER

THREE

QUICK START

In this chapter we go through the steps to create a simple program that uses VTK-m. This “hello world” example
presents only the bare minimum of features available. The remainder of this book documents dives into much greater
detail.

We will call the example program we are building VTKmQuickStart. It will demonstrate reading data from a file,
processing the data with a filter, and rendering an image of the data. Readers who are less interested in an explanation
and are more interested in browsing some code can skip to Section 3.5 (The Full Example).

3.1 Initialize

The first step to using VTK-m is to initialize the library. Although initializing VTK-m is optional, it is recommend to
allow VTK-m to configure devices and logging. Initialization is done by calling the vtkm::cont::Initialize()
function. The Initialize function is defined in the vtkm/cont/Initialize.h header file.

Initialize takes the argc and argv arguments that are passed to the main function of your program, find any
command line arguments relevant to VTK-m, and remove them from the list to make further command line argument
processing easier.

17

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 1: Initializing VTK-m.

1 int main(int argc, char* argv[])
2 {
3 vtkm::cont::Initialize(argc, argv, vtkm::cont::InitializeOptions::AddHelp);

Initialize has many options to customize command line argument processing. See Chapter 6 (Initialization) for
more details.

Did You Know?

Don’t have access to argc and argv? No problem. You can call vtkm::cont::Initialize() with no arguments.

3.2 Reading a File

VTK-m comes with a simple I/O library that can read and write files in VTK legacy format. These files have a .vtk
extension.

VTK legacy files can be read using the vtkm::io::VTKDataSetReader object, which is declared in the
vtkm/io/VTKDataSetReader.h header file. The object is constructed with a string specifying the filename
(which for this example we will get from the command line). The data is then read in by calling the
vtkm::io::VTKDataSetReader::ReadDataSet() method.

Example 2: Reading data from a VTK legacy file.

1 vtkm::io::VTKDataSetReader reader(argv[1]);
2 vtkm::cont::DataSet inData = reader.ReadDataSet();

The ReadDataSet method returns the data in a vtkm::cont::DataSet object. The structure and features of a
DataSet object is described in Chapter 7 (Data Sets). For the purposes of this quick start, we will treat DataSet
as a mostly opaque object that gets passed to and from operations in VTK-m.

More information about VTK-m’s file readers and writers can be found in Chapter 8 (File I/O).

3.3 Running a Filter

Algorithms in VTK-m are encapsulated in units called filters. A filter takes in a DataSet, processes it, and returns a
new DataSet. The returned DataSet often, but not always, contains data inherited from the source data.

VTK-m comes with many filters, which are documented in Chapter 10 (Provided Filters). For this example,
we will demonstrate the use of the vtkm::filter::MeshQuality filter, which is defined in the vtkm/filter/
MeshQuality.h header file. The MeshQuality filter will compute for each cell in the input data will compute a
quantity representing some metric of the cell’s shape. Several metrics are available, and in this example we will find
the area of each cell.

Like all filters, MeshQuality contains an Execute method that takes an input DataSet and produces an output
DataSet. It also has several methods used to set up the parameters of the execution. Section 10.10.3 (Mesh Quality
Metrics) provides details on all the options of MeshQuality. Suffice it to say that in this example we instruct the filter
to find the area of each cell, which it will output to a field named area.

18 Chapter 3. Quick Start

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 3: Running a filter.

1 vtkm::filter::mesh_info::MeshQuality cellArea;
2 cellArea.SetMetric(vtkm::filter::mesh_info::CellMetric::Area);
3 vtkm::cont::DataSet outData = cellArea.Execute(inData);

3.4 Rendering an Image

Although it is possible to leverage external rendering systems, VTK-m comes with its own self-contained image ren-
dering algorithms. These rendering classes are completely implemented with the parallel features provided by VTK-m,
so using rendering in VTK-m does not require any complex library dependencies.

Even a simple rendering scene requires setting up several parameters to establish what is to be featured in the image
including what data should be rendered, how that data should be represented, where objects should be placed in space,
and the qualities of the image to generate. Consequently, setting up rendering in VTK-m involves many steps. Chapter
11 (Rendering) goes into much detail on the ways in which a rendering scene is specified. For now, we just briefly
present some boilerplate to achieve a simple rendering.

Example 4: Rendering data.

1 vtkm::rendering::Actor actor(
2 outData.GetCellSet(), outData.GetCoordinateSystem(), outData.GetField("area"));
3

4 vtkm::rendering::Scene scene;
5 scene.AddActor(actor);
6

7 vtkm::rendering::MapperRayTracer mapper;
8

9 vtkm::rendering::CanvasRayTracer canvas(1280, 1024);
10

11 vtkm::rendering::View3D view(scene, mapper, canvas);
12

13 view.Paint();
14

15 view.SaveAs("image.png");

The first step in setting up a render is to create a scene. A scene comprises some number of actors, which represent
some data to be rendered in some location in space. In our case we only have one DataSet to render, so we simply
create a single actor and add it to a scene as shown in Example 4 lines 1 – 5.

The second step in setting up a render is to create a view. The view comprises the aforementioned scene, a map-
per, which describes how the data are to be rendered, and a canvas, which holds the image buffer and other ren-
dering context. The view is created in Example 4, line 11. The image generation is then performed by calling
vtkm::rendering::View::Paint() on the view object (Example 4, line 13). However, the rendering done by
VTK-m’s rendering classes is performed offscreen, which means that the result does not appear on your computer’s
monitor. The easiest way to see the image is to save it to an image file using the vtkm::rendering::View::SaveAs()
method (Example 4, line 15).

3.4. Rendering an Image 19

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

3.5 The Full Example

Putting together the examples from the previous sections, here is a complete program for reading, processing, and
rendering data with VTK-m.

Example 5: Simple example of using VTK-m.

1 #include <vtkm/cont/Initialize.h>
2

3 #include <vtkm/io/VTKDataSetReader.h>
4

5 #include <vtkm/filter/mesh_info/MeshQuality.h>
6

7 #include <vtkm/rendering/Actor.h>
8 #include <vtkm/rendering/CanvasRayTracer.h>
9 #include <vtkm/rendering/MapperRayTracer.h>

10 #include <vtkm/rendering/Scene.h>
11 #include <vtkm/rendering/View3D.h>
12

13 int main(int argc, char* argv[])
14 {
15 vtkm::cont::Initialize(argc, argv, vtkm::cont::InitializeOptions::AddHelp);
16

17 if (argc != 2)
18 {
19 std::cerr << "USAGE: " << argv[0] << " <file.vtk>" << std::endl;
20 return 1;
21 }
22

23 // Read in a file specified in the first command line argument.
24 vtkm::io::VTKDataSetReader reader(argv[1]);
25 vtkm::cont::DataSet inData = reader.ReadDataSet();
26

27 // Run the data through the elevation filter.
28 vtkm::filter::mesh_info::MeshQuality cellArea;
29 cellArea.SetMetric(vtkm::filter::mesh_info::CellMetric::Area);
30 vtkm::cont::DataSet outData = cellArea.Execute(inData);
31

32 // Render an image and write it out to a file.
33 vtkm::rendering::Actor actor(
34 outData.GetCellSet(), outData.GetCoordinateSystem(), outData.GetField("area"));
35

36 vtkm::rendering::Scene scene;
37 scene.AddActor(actor);
38

39 vtkm::rendering::MapperRayTracer mapper;
40

41 vtkm::rendering::CanvasRayTracer canvas(1280, 1024);
42

43 vtkm::rendering::View3D view(scene, mapper, canvas);
44

45 view.Paint();
46

(continues on next page)

20 Chapter 3. Quick Start

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

47 view.SaveAs("image.png");
48

49 return 0;
50 }

3.6 Build Configuration

Now that we have the program listed in Example 5, we still need to compile it with the appropriate compilers and flags.
By far the easiest way to compile VTK-m code is to use CMake. CMake commands that can be used to link code to
VTK-m are discussed in Section 2.4 (Linking to VTK-m). The following example provides a minimal CMakeLists.
txt required to build this program.

Example 6: CMakeLists.txt to build a program using VTK-m.

1 cmake_minimum_required(VERSION 3.13)
2 project(VTKmQuickStart CXX)
3

4 find_package(VTKm REQUIRED)
5

6 add_executable(VTKmQuickStart VTKmQuickStart.cxx)
7 target_link_libraries(VTKmQuickStart vtkm::filter vtkm::rendering)

The first two lines contain boilerplate for any CMakeLists.txt file. They all should declare the minimum CMake
version required (for backward compatibility) and have a project() command to declare which languages are used.

The remainder of the commands find the VTK-m library, declare the program begin compiled, and link the program
to the VTK-m library. These steps are described in detail in Section 2.4 (Linking to VTK-m).

3.6. Build Configuration 21

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

22 Chapter 3. Quick Start

Part II

Using VTK-m

23

CHAPTER

FOUR

BASE TYPES

It is common for a framework to define its own types. Even the C++ standard template library defines its own base
types like std::size_t and std::pair. VTK-m is no exception.

In fact VTK-m provides a great many base types. It is the general coding standard of VTK-m to not directly use the
base C types like int and float and instead to use types declared in VTK-m. The rational is to precisely declare the
representation of each variable to prevent future trouble.

Consider that you are programming something and you need to declare an integer variable. You would declare this
variable as int, right? Well, maybe. In C++, the declaration int does not simply mean “an integer.” int means
something much more specific than that. If you were to look up the C++11 standard, you would find that int is an
integer represented in 32 bits with a two’s complement signed representation. In fact, a C++ compiler has no less than
8 standard integer types.

So, int is nowhere near as general as the code might make it seem, and treating it as such could lead to trouble. For
example, consider the MPI standard, which, back in the 1990’s, implicitly selected int for its indexing needs. Fast
forward to today where there is a need to reference buffers with more than 2 billion elements, but the standard is stuck
with a data type that cannot represent sizes that big. (To be fair, it is possible to represent buffers this large in MPI, but
it is extraordinarily awkward to do so.

Consequently, we feel that with VTK-m it is best to declare the intention of a variable with its declaration, which should
help both prevent errors and future proof code. All the types presented in this chapter are declared in vtkm/Types.h,
which is typically included either directly or indirectly by all source using VTK-m.

4.1 Floating Point Types

VTK-m declares 2 types to hold floating point numbers: vtkm::Float32 and vtkm::Float64. These, of course,
represent floating point numbers with 32-bits and 64-bits of precision, respectively. These should be used when the
precision of a floating point number is predetermined.

using vtkm::Float32 = float
Base type to use for 32-bit floating-point numbers.

using vtkm::Float64 = double
Base type to use for 64-bit floating-point numbers.

When the precision of a floating point number is not predetermined, operations usually have to be overloaded or tem-
plated to work with multiple precisions. In cases where a precision must be set, but no particular precision is specified,
vtkm::FloatDefault should be used.

using vtkm::FloatDefault = vtkm::Float32

25

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The floating point type to use when no other precision is specified.

vtkm::FloatDefault will be set to either vtkm::Float32 or vtkm::Float64 depending on whether the CMake
option VTKm_USE_DOUBLE_PRECISION was set when VTK-m was compiled, as discussed in Section 2.2 (Configuring
VTK-m). Using vtkm::FloatDefault makes it easier for users to trade off precision and speed.

4.2 Integer Types

The most common use of an integer in VTK-m is to index arrays. For this purpose, the vtkm::Id type should be used.
(The width of vtkm::Id is determined by the VTKm_USE_64BIT_IDS CMake option.)

using vtkm::Id = vtkm::Int64
Base type to use to index arrays.

This type represents an ID (index into arrays). It should be used whenever indexing data that could grow arbi-
trarily large.

VTK-m also has a secondary index type named vtkm::IdComponent, which is smaller and typically used for indexing
groups of components within a thread. For example, if you had an array of 3D points, you would use vtkm::Id to
reference each point, and you would use vtkm::IdComponent to reference the respective 𝑥, 𝑦, and 𝑧 components.

using vtkm::IdComponent = vtkm::Int32
Base type to use to index small lists.

This type represents a component ID (index of component in a vector). The number of components, being a
value fixed at compile time, is generally assumed to be quite small. However, we are currently using a 32-bit
width integer because modern processors tend to access them more efficiently than smaller widths.

Did You Know?

The VTK-m index types, vtkm::Id and vtkm::IdComponent use signed integers. This breaks with the convention
of other common index types like the C++ standard template library std::size_t, which use unsigned integers.
Unsigned integers make sense for indices as a valid index is always 0 or greater. However, doing things like iterating in
a for loop backward, representing relative indices, and representing invalid values is much easier with signed integers.
Thus, VTK-m chooses to use a signed integer for indexing.

VTK-m also has types to declare an integer of a specific width and sign. The types vtkm::Int8, vtkm::Int16,
vtkm::Int32, and vtkm::Int64 specify signed integers of 1, 2, 4, and 8 bytes, respectively. Likewise, the types
vtkm::UInt8, vtkm::UInt16, vtkm::UInt32, and vtkm::UInt64 specify unsigned integers of 1, 2, 4, and 8 bytes,
respectively.

using vtkm::Int8 = int8_t
Base type to use for 8-bit signed integer numbers.

using vtkm::UInt8 = uint8_t
Base type to use for 8-bit unsigned integer numbers.

using vtkm::Int16 = int16_t
Base type to use for 16-bit signed integer numbers.

26 Chapter 4. Base Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

using vtkm::UInt16 = uint16_t
Base type to use for 16-bit unsigned integer numbers.

using vtkm::Int32 = int32_t
Base type to use for 32-bit signed integer numbers.

using vtkm::UInt32 = uint32_t
Base type to use for 32-bit unsigned integer numbers.

using vtkm::Int64 = signed long long
Base type to use for 64-bit signed integer numbers.

using vtkm::UInt64 = unsigned long long
Base type to use for 64-bit signed integer numbers.

4.3 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homogeneous
coordinates of length 4. To simplify these types of operations, VTK-m provides a collection of base types to represent
these short vectors, which are collectively referred to as Vec types.

vtkm::Vec2f , vtkm::Vec3f , and vtkm::Vec4f specify floating point vectors of 2, 3, and 4 components, respec-
tively. The precision of the floating point numbers follows that of vtkm::FloatDefault (which, as documented in
Section 4.1 (Floating Point Types), is specified by the VTKm_USE_DOUBLE_PRECISION compile option). Components
of these and other Vec types can be references through the [] operator, much like a C array. A Vec also supports
basic arithmetic operators so that it can be used much like its scalar-value counterparts.

using vtkm::Vec2f = vtkm::Vec<vtkm::FloatDefault, 2>
Vec2f corresponds to a 2-dimensional vector of floating point values.

Each floating point value is of the default precision (i.e. vtkm::FloatDefault). It is typedef for
vtkm::Vec<vtkm::FloatDefault, 2>.

using vtkm::Vec3f = vtkm::Vec<vtkm::FloatDefault, 3>
Vec3f corresponds to a 3-dimensional vector of floating point values.

Each floating point value is of the default precision (i.e. vtkm::FloatDefault). It is typedef for
vtkm::Vec<vtkm::FloatDefault, 3>.

using vtkm::Vec4f = vtkm::Vec<vtkm::FloatDefault, 4>
Vec4f corresponds to a 4-dimensional vector of floating point values.

Each floating point value is of the default precision (i.e. vtkm::FloatDefault). It is typedef for
vtkm::Vec<vtkm::FloatDefault, 4>.

4.3. Vector Types 27

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 1: Simple use of Vec objects.

1 vtkm::Vec2f A(1); // A is (1, 1)
2 A[1] = 3; // A is (1, 3) now
3 vtkm::Vec2f B = { 4, 5 }; // B is (4, 5)
4 vtkm::Vec2f C = A + B; // C is (5, 8)
5 vtkm::FloatDefault manhattanDistance = C[0] + C[1];

You can also specify the precision for each of these vector types by appending the bit size of each component. For
example, vtkm::Vec3f_32 and vtkm::Vec3f_64 represent 3-component floating point vectors with each component
being 32 bits and 64 bits respectively. Note that the precision number refers to the precision of each component, not
the vector as a whole. So vtkm::Vec3f_32 contains 3 32-bit (4-byte) floating point components, which means the
entire vtkm::Vec3f_32 requires 96 bits (12 bytes).

using vtkm::Vec2f_32 = vtkm::Vec<vtkm::Float32, 2>
Vec2f_32 corresponds to a 2-dimensional vector of 32-bit floating point values.

It is typedef for vtkm::Vec<vtkm::Float32, 2>.

using vtkm::Vec2f_64 = vtkm::Vec<vtkm::Float64, 2>
Vec2f_64 corresponds to a 2-dimensional vector of 64-bit floating point values.

It is typedef for vtkm::Vec<vtkm::Float64, 2>.

using vtkm::Vec3f_32 = vtkm::Vec<vtkm::Float32, 3>
Vec3f_32 corresponds to a 3-dimensional vector of 32-bit floating point values.

It is typedef for vtkm::Vec<vtkm::Float32, 3>.

using vtkm::Vec3f_64 = vtkm::Vec<vtkm::Float64, 3>
Vec3f_64 corresponds to a 3-dimensional vector of 64-bit floating point values.

It is typedef for vtkm::Vec<vtkm::Float64, 3>.

using vtkm::Vec4f_32 = vtkm::Vec<vtkm::Float32, 4>
Vec4f_32 corresponds to a 4-dimensional vector of 32-bit floating point values.

It is typedef for vtkm::Vec<vtkm::Float32, 4>.

using vtkm::Vec4f_64 = vtkm::Vec<vtkm::Float64, 4>
Vec4f_64 corresponds to a 4-dimensional vector of 64-bit floating point values.

It is typedef for vtkm::Vec<vtkm::Float64, 4>.

To help with indexing 2-, 3-, and 4- dimensional arrays, VTK-m provides the types vtkm::Id2, vtkm::Id3, and
vtkm::Id4, which are textidentifier{Vec}s of type vtkm::Id . Likewise, VTK-m provides vtkm::IdComponent2,
vtkm::IdComponent3, and vtkm::IdComponent4.

using vtkm::Id2 = vtkm::Vec<vtkm::Id, 2>
Id2 corresponds to a 2-dimensional index.

using vtkm::Id3 = vtkm::Vec<vtkm::Id, 3>
Id3 corresponds to a 3-dimensional index for 3d arrays.

28 Chapter 4. Base Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Note that the precision of each index may be less than vtkm::Id.

using vtkm::Id4 = vtkm::Vec<vtkm::Id, 4>
Id4 corresponds to a 4-dimensional index.

using vtkm::IdComponent2 = vtkm::Vec<vtkm::IdComponent, 2>
IdComponent2 corresponds to an index to a local (small) 2-d array or equivalent.

using vtkm::IdComponent3 = vtkm::Vec<vtkm::IdComponent, 3>
IdComponent2 corresponds to an index to a local (small) 3-d array or equivalent.

using vtkm::IdComponent4 = vtkm::Vec<vtkm::IdComponent, 4>
IdComponent4 corresponds to an index to a local (small) 4-d array or equivalent.

VTK-m also provides types for textidentifier{Vec}s of integers of all varieties described in Section
ref{sec:IntegerTypes}. vtkm::Vec2i, vtkm::Vec3i, and vtkm::Vec4i are vectors of signed integers whereas
vtkm::Vec2ui, vtkm::Vec3ui, and vtkm::Vec4ui are vectors of unsigned integers. All of these sport components
of a width equal to vtkm::Id .

using vtkm::Vec2i = vtkm::Vec<vtkm::Id, 2>
Vec2i corresponds to a 2-dimensional vector of integer values.

Each integer value is of the default precision (i.e. vtkm::Id).

using vtkm::Vec3i = vtkm::Vec<vtkm::Id, 3>
Vec3i corresponds to a 3-dimensional vector of integer values.

Each integer value is of the default precision (i.e. vtkm::Id).

using vtkm::Vec4i = vtkm::Vec<vtkm::Id, 4>
Vec4i corresponds to a 4-dimensional vector of integer values.

Each integer value is of the default precision (i.e. vtkm::Id).

using vtkm::Vec2ui = vtkm::Vec<vtkm::UInt64, 2>
Vec2ui corresponds to a 2-dimensional vector of unsigned integer values.

Each integer value is of the default precision (following vtkm::Id).

using vtkm::Vec3ui = vtkm::Vec<vtkm::UInt64, 3>
Vec3ui corresponds to a 3-dimensional vector of unsigned integer values.

Each integer value is of the default precision (following vtkm::Id).

using vtkm::Vec4ui = vtkm::Vec<vtkm::UInt64, 4>
Vec4ui corresponds to a 4-dimensional vector of unsigned integer values.

Each integer value is of the default precision (following vtkm::Id).

The width can be specified by appending the desired number of bits in the same way as the floating point textidenti-
fier{Vec}s. For example, vtkm::Vec4ui_8 is a textidentifier{Vec} of 4 unsigned bytes.

4.3. Vector Types 29

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

using vtkm::Vec2i_8 = vtkm::Vec<vtkm::Int8, 2>
Vec2i_8 corresponds to a 2-dimensional vector of 8-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 2>.

using vtkm::Vec2ui_8 = vtkm::Vec<vtkm::UInt8, 2>
Vec2ui_8 corresponds to a 2-dimensional vector of 8-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 2>.

using vtkm::Vec2i_16 = vtkm::Vec<vtkm::Int16, 2>
Vec2i_16 corresponds to a 2-dimensional vector of 16-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 2>.

using vtkm::Vec2ui_16 = vtkm::Vec<vtkm::UInt16, 2>
Vec2ui_16 corresponds to a 2-dimensional vector of 16-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 2>.

using vtkm::Vec2i_32 = vtkm::Vec<vtkm::Int32, 2>
Vec2i_32 corresponds to a 2-dimensional vector of 32-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 2>.

using vtkm::Vec2ui_32 = vtkm::Vec<vtkm::UInt32, 2>
Vec2ui_32 corresponds to a 2-dimensional vector of 32-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 2>.

using vtkm::Vec2i_64 = vtkm::Vec<vtkm::Int64, 2>
Vec2i_64 corresponds to a 2-dimensional vector of 64-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int64, 2>.

using vtkm::Vec2ui_64 = vtkm::Vec<vtkm::UInt64, 2>
Vec2ui_64 corresponds to a 2-dimensional vector of 64-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt64, 2>.

using vtkm::Vec3i_8 = vtkm::Vec<vtkm::Int8, 3>
Vec3i_8 corresponds to a 3-dimensional vector of 8-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 3>.

using vtkm::Vec3ui_8 = vtkm::Vec<vtkm::UInt8, 3>
Vec3ui_8 corresponds to a 3-dimensional vector of 8-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 3>.

using vtkm::Vec3i_16 = vtkm::Vec<vtkm::Int16, 3>
Vec3i_16 corresponds to a 3-dimensional vector of 16-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 3>.

30 Chapter 4. Base Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

using vtkm::Vec3ui_16 = vtkm::Vec<vtkm::UInt16, 3>
Vec3ui_16 corresponds to a 3-dimensional vector of 16-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 3>.

using vtkm::Vec3i_32 = vtkm::Vec<vtkm::Int32, 3>
Vec3i_32 corresponds to a 3-dimensional vector of 32-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 3>.

using vtkm::Vec3ui_32 = vtkm::Vec<vtkm::UInt32, 3>
Vec3ui_32 corresponds to a 3-dimensional vector of 32-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 3>.

using vtkm::Vec3i_64 = vtkm::Vec<vtkm::Int64, 3>
Vec3i_64 corresponds to a 3-dimensional vector of 64-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int64, 3>.

using vtkm::Vec3ui_64 = vtkm::Vec<vtkm::UInt64, 3>
Vec3ui_64 corresponds to a 3-dimensional vector of 64-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt64, 3>.

using vtkm::Vec4i_8 = vtkm::Vec<vtkm::Int8, 4>
Vec4i_8 corresponds to a 4-dimensional vector of 8-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 4>.

using vtkm::Vec4ui_8 = vtkm::Vec<vtkm::UInt8, 4>
Vec4ui_8 corresponds to a 4-dimensional vector of 8-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 4>.

using vtkm::Vec4i_16 = vtkm::Vec<vtkm::Int16, 4>
Vec4i_16 corresponds to a 4-dimensional vector of 16-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 4>.

using vtkm::Vec4ui_16 = vtkm::Vec<vtkm::UInt16, 4>
Vec4ui_16 corresponds to a 4-dimensional vector of 16-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 4>.

using vtkm::Vec4i_32 = vtkm::Vec<vtkm::Int32, 4>
Vec4i_32 corresponds to a 4-dimensional vector of 32-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int32, 4>.

using vtkm::Vec4ui_32 = vtkm::Vec<vtkm::UInt32, 4>
Vec4ui_32 corresponds to a 4-dimensional vector of 32-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt32, 4>.

4.3. Vector Types 31

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

using vtkm::Vec4i_64 = vtkm::Vec<vtkm::Int64, 4>
Vec4i_64 corresponds to a 4-dimensional vector of 64-bit integer values.

It is typedef for vtkm::Vec<vtkm::Int64, 4>.

using vtkm::Vec4ui_64 = vtkm::Vec<vtkm::UInt64, 4>
Vec4ui_64 corresponds to a 4-dimensional vector of 64-bit unsigned integer values.

It is typedef for vtkm::Vec<vtkm::UInt64, 4>.

These types really just scratch the surface of the Vec types available in VTK-m and the things that can be done with
them. See Chapter 20 (Advanced Types) for more information on Vec types and what can be done with them.

32 Chapter 4. Base Types

CHAPTER

FIVE

VTK-M VERSION

As the VTK-m code evolves, changes to the interface and behavior will inevitably happen. Consequently, code that
links into VTK-m might need a specific version of VTK-m or changes its behavior based on what version of VTK-m it
is using. To facilitate this, VTK-m software is managed with a versioning system and advertises its version in multiple
ways. As with many software products, VTK-m has three version numbers: major, minor, and patch. The major
version represents significant changes in the VTK-m implementation and interface. Changes in the major version
include backward incompatible changes. The minor version represents added functionality. Generally, changes in the
minor version to not introduce changes to the API. The patch version represents fixes provided after a release occurs.
Patch versions represent minimal change and do not add features.

If you are writing a software package that is managed by CMake and load VTK-m with the find_package() com-
mand as described in Section 2.4 (Linking to VTK-m), then you can query the VTK-m version directly in the CMake
configuration. When you load VTK-m with find_package(), CMake sets the variables VTKm_VERSION_MAJOR ,
VTKm_VERSION_MINOR , and VTKm_VERSION_PATCH to the major, minor, and patch versions, respectively. Addi-
tionally, VTKm_VERSION is set to the “major.minor” version number and VTKm_VERSION_FULL is set to the “ma-
jor.minor.patch” version number. If the current version of VTK-m is actually a development version that is in between
releases of VTK-m, then and abbreviated SHA of the git commit is also included as part of VTKm_VERSION_FULL.

Did You Know?

If you have a specific version of VTK-m required for your software, you can also use the version option to the
find_package() CMake command. The find_package() command takes an optional version argument that causes
the command to fail if the wrong version of the package is found.

It is also possible to query the VTK-m version directly in your code through preprocessor macros. The vtkm/Version.
h header file defines the following preprocessor macros to identify the VTK-m version.

VTKM_VERSION

The version number of the loaded VTK-m package. This is in the form “major.minor”.

VTKM_VERSION_FULL

The extended version number of the VTK-m package including patch and in-between-release information. This
is in the form “major.minor.patch[.gitsha1]” where “gitsha” is only included if the source code is in between
releases.

VTKM_VERSION_MAJOR

The major VTK-m version number.

VTKM_VERSION_MINOR

The minor VTK-m version number.

VTKM_VERSION_PATCH

The patch VTK-m version number.

33

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Common Errors

Note that the CMake variables all begin with VTKm_ (lowercase “m”) whereas the preprocessor macros begin with
VTKM_ (all uppercase). This follows the respective conventions of CMake variables and preprocessor macros.

Note that vtkm/Version.h does not include any other VTK-m header files. This gives your code a chance to load,
query, and react to the VTK-m version before loading any VTK-m code proper.

34 Chapter 5. VTK-m Version

CHAPTER

SIX

INITIALIZATION

When it comes to running VTK-m code, there are a few ways in which various facilities, such as logging de-
vice connections, and device configuration parameters, can be initialized. The preferred method of initializing
these features is to run the vtkm::cont::Initialize() function. Although it is not strictly necessary to call
vtkm::cont::Initialize(), it is recommended to set up state and check for available devices.

InitializeResult vtkm::cont::Initialize(int &argc, char *argv[], InitializeOptions opts =
InitializeOptions::None)

Initialize the VTKm library, parsing arguments when provided:

• Sets log level names when logging is configured.

• Sets the calling thread as the main thread for logging purposes.

• Sets the default log level to the argument provided to --vtkm-log-level.

• Forces usage of the device name passed to --vtkm-device.

• Prints usage when -h or --vtkm-help is passed.

The parameterless version only sets up log level names.

Additional options may be supplied via the opts argument, such as requiring the --vtkm-device option.

Results are available in the returned InitializeResult.

Note: This method may call exit() on parse error.

vtkm::cont::Initialize() can be called without any arguments, in which case VTK-m will be initialized with
defaults. But it can also optionally take the argc and argv arguments to the main function to parse some options
that control the state of VTK-m. VTK-m accepts arguments that, for example, configure the compute device to use or
establish logging levels. Any arguments that are handled by VTK-m are removed from the argc/argv list so that your
program can then respond to the remaining arguments.

vtkm::cont::Initialize() returns a vtkm::cont::InitializeResult structure. This structure contains infor-
mation about the supported arguments and options selected during initialization.

struct InitializeResult

35

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Members

DeviceAdapterId Device = DeviceAdapterTagUndefined{}
The device passed into --vtkm-device argument.

If no device was specified, then this value is set to DeviceAdapterTagUndefined . Note that if the user
specifies “any” device, then this value can be set to DeviceAdapterTagAny, which is a pseudo-tag that
allows any supported device.

std::string Usage
A usage statement for arguments parsed by VTK-m.

If the calling code wants to print a usage statement documenting the options that can be provided on the
command line, then this string can be added to document the options supported by VTK-m.

vtkm::cont::Initialize() takes an optional third argument that specifies some options on the behav-
ior of the argument parsing. The options are specified as a bit-wise “or” of fields specified in the
vtkm::cont::InitializeOptions enum.

enum class vtkm::cont::InitializeOptions
Values:

enumerator None
Placeholder used when no options are enabled.

This is the value used when the third argument to vtkm::cont::Initialize is not provided.

enumerator RequireDevice
Issue an error if the device argument is not specified.

enumerator DefaultAnyDevice
If no device is specified, treat it as if the user gave --vtkm-device=Any.

This means that DeviceAdapterTagUndefined will never be returned in the result.

enumerator AddHelp
Add a help argument.

If -h or --vtkm-help is provided, prints a usage statement. Of course, the usage statement will only print
out arguments processed by VTK-m, which is why help is not given by default. Alternatively, a string with
usage help is returned from vtkm::cont::Initialize so that the calling program can provide VTK-m’s
help in its own usage statement.

enumerator ErrorOnBadOption
If an unknown option is encountered, the program terminates with an error and a usage statement is printed.

If this option is not provided, any unknown options are returned in argv. If this option is used, it is a good
idea to use AddHelp as well.

enumerator ErrorOnBadArgument
If an extra argument is encountered, the program terminates with an error and a usage statement is printed.

If this option is not provided, any unknown arguments are returned in argv.

36 Chapter 6. Initialization

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator Strict
If supplied, Initialize treats its own arguments as the only ones supported by the application and provides
an error if not followed exactly.

This is a convenience option that is a combination of ErrorOnBadOption, ErrorOnBadArgument, and
AddHelp.

Example 1: Calling vtkm::cont::Initialize().

1 #include <vtkm/cont/Initialize.h>
2

3 int main(int argc, char** argv)
4 {
5 vtkm::cont::InitializeOptions options =
6 vtkm::cont::InitializeOptions::ErrorOnBadOption |
7 vtkm::cont::InitializeOptions::DefaultAnyDevice;
8 vtkm::cont::InitializeResult config = vtkm::cont::Initialize(argc, argv, options);
9

10 if (argc != 2)
11 {
12 std::cerr << "USAGE: " << argv[0] << " [options] filename" << std::endl;
13 std::cerr << "Available options are:" << std::endl;
14 std::cerr << config.Usage << std::endl;
15 return 1;
16 }
17 std::string filename = argv[1];
18

19 // Do something cool with VTK-m
20 // ...
21

22 return 0;
23 }

37

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

38 Chapter 6. Initialization

CHAPTER

SEVEN

DATA SETS

A data set, implemented with the vtkm::cont::DataSet class, contains and manages the geometric data structures
that VTK-m operates on.

class DataSet
Contains and manages the geometric data structures that VTK-m operates on.

A DataSet is the main data structure used by VTK-m to pass data in and out of filters, rendering, and other
components. A data set comprises the following 3 data structures.

• CellSet A cell set describes topological connections. A cell set defines some number of points in space and
how they connect to form cells, filled regions of space. A data set has exactly one cell set.

• Field A field describes numerical data associated with the topological elements in a cell set. The field is
represented as an array, and each entry in the field array corresponds to a topological element (point, edge,
face, or cell). Together the cell set topology and discrete data values in the field provide an interpolated
function throughout the volume of space covered by the data set. A cell set can have any number of fields.

• CoordinateSystem A coordinate system is a special field that describes the physical location of the points
in a data set. Although it is most common for a data set to contain a single coordinate system, VTK-m
supports data sets with no coordinate system such as abstract data structures like graphs that might not
have positions in a space. DataSet also supports multiple coordinate systems for data that have multiple
representations for position. For example, geospatial data could simultaneously have coordinate systems
defined by 3D position, latitude-longitude, and any number of 2D projections.

In addition to the base vtkm::cont::DataSet, VTK-m provides vtkm::cont::PartitionedDataSet to represent
data partitioned into multiple domains. A vtkm::cont::PartitionedDataSet is implemented as a collection of
vtkm::cont::DataSet objects. Partitioned data sets are described later in Section 7.5 (Partitioned Data Sets).

7.1 Building Data Sets

Before we go into detail on the cell sets, fields, and coordinate systems that make up a data set in VTK-m, let us first
discuss how to build a data set. One simple way to build a data set is to load data from a file using the vtkm::io module.
Reading files is discussed in detail in Chapter 8 (File I/O).

This section describes building data sets of different types using a set of classes named DataSetBuilder*, which provide
a convenience layer on top of vtkm::cont::DataSet to make it easier to create data sets.

Did You Know?

39

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

To simplify the introduction of vtkm::cont::DataSet objects, this section uses the simplest mechanisms. In many
cases this involves loading data in a std::vector and passing that to VTK-m, which usually causes the data to be copied.
This is not the most efficient method to load data into VTK-m. Although it is sufficient for small data or data that come
from a “slow” source, such as a file, it might be a bottleneck for large data generated by another library. It is possible to
adapt VTK-m’s vtkm::cont::DataSet to externally defined data. This is done by wrapping existing data into what
is called ArrayHandle, but this is a more advanced topic that will not be addressed in this chapter. ArrayHandle objects
are introduced in Chapter 17 (Basic Array Handles) and more adaptive techniques are described in later chapters.

7.1.1 Creating Uniform Grids

Uniform grids are meshes that have a regular array structure with points uniformly spaced parallel to the axes. Uniform
grids are also sometimes called regular grids or images.

The vtkm::cont::DataSetBuilderUniform class can be used to easily create 2- or 3-dimensional
uniform grids. vtkm::cont::DataSetBuilderUniform has several versions of a method named
vtkm::cont::DataSetBuilderUniform::Create() that takes the number of points in each dimension, the
origin, and the spacing. The origin is the location of the first point of the data (in the lower left corner), and the spacing
is the distance between points in the x, y, and z directions.

class DataSetBuilderUniform

Public Static Functions

template<typename T>
static inline vtkm::cont::DataSet Create(const vtkm::Id &dimension, const T &origin, const T &spacing,

const std::string &coordNm = "coords")
Create a 1D uniform DataSet.

Parameters

• dimension – [in] The size of the grid. The dimensions are specified based on the number
of points (as opposed to the number of cells).

• origin – [in] The origin of the data. This is the point coordinate with the minimum value
in all dimensions.

• spacing – [in] The uniform distance between adjacent points.

• coordNm – [in] (optional) The name to register the coordinates as.

static vtkm::cont::DataSet Create(const vtkm::Id &dimension, const std::string &coordNm = "coords")
Create a 1D uniform DataSet.

The origin is set to 0 and the spacing is set to 1.

Parameters

• dimension – [in] The size of the grid. The dimensions are specified based on the number
of points (as opposed to the number of cells).

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const vtkm::Id2 &dimensions, const vtkm::Vec<T , 2> &origin, const

vtkm::Vec<T , 2> &spacing, const std::string &coordNm = "coords")
Create a 2D uniform DataSet.

40 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Parameters

• dimensions – [in] The size of the grid. The dimensions are specified based on the number
of points (as opposed to the number of cells).

• origin – [in] The origin of the data. This is the point coordinate with the minimum value
in all dimensions.

• spacing – [in] The uniform distance between adjacent points.

• coordNm – [in] (optional) The name to register the coordinates as.

static vtkm::cont::DataSet Create(const vtkm::Id2 &dimensions, const std::string &coordNm = "coords")
Create a 2D uniform DataSet.

The origin is set to (0,0) and the spacing is set to (1,1).

Parameters

• dimensions – [in] The size of the grid. The dimensions are specified based on the number
of points (as opposed to the number of cells).

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const vtkm::Id3 &dimensions, const vtkm::Vec<T , 3> &origin, const

vtkm::Vec<T , 3> &spacing, const std::string &coordNm = "coords")
Create a 3D uniform DataSet.

Parameters

• dimensions – [in] The size of the grid. The dimensions are specified based on the number
of points (as opposed to the number of cells).

• origin – [in] The origin of the data. This is the point coordinate with the minimum value
in all dimensions.

• spacing – [in] The uniform distance between adjacent points.

• coordNm – [in] (optional) The name to register the coordinates as.

static vtkm::cont::DataSet Create(const vtkm::Id3 &dimensions, const std::string &coordNm = "coords")
Create a 3D uniform DataSet.

The origin is set to (0,0,0) and the spacing is set to (1,1,1).

Parameters

• dimensions – [in] The size of the grid. The dimensions are specified based on the number
of points (as opposed to the number of cells).

• coordNm – [in] (optional) The name to register the coordinates as.

The following example creates a vtkm::cont::DataSet containing a uniform grid of 101× 101× 26 points.

Example 1: Creating a uniform grid.}{.cxx}

1 vtkm::cont::DataSetBuilderUniform dataSetBuilder;
2

3 vtkm::cont::DataSet dataSet = dataSetBuilder.Create(vtkm::Id3(101, 101, 26));

If not specified, the origin will be at the coordinates (0, 0, 0) and the spacing will be 1 in each direction. Thus, in
the previous example the width, height, and depth of the mesh in physical space will be 100, 100, and :math`25`,
respectively, and the mesh will be centered at (50, 50, 12.5). Let us say we actually want a mesh of the same dimensions,

7.1. Building Data Sets 41

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

but we want the 𝑧 direction to be stretched out so that the mesh will be the same size in each direction, and we want
the mesh centered at the origin.

Example 2: Creating a uniform grid with custom origin and spacing.

1 vtkm::cont::DataSetBuilderUniform dataSetBuilder;
2

3 vtkm::cont::DataSet dataSet = dataSetBuilder.Create(vtkm::Id3(101, 101, 26),
4 vtkm::Vec3f(-50.0, -50.0, -50.0),
5 vtkm::Vec3f(1.0, 1.0, 4.0));

7.1.2 Creating Rectilinear Grids

A rectilinear grid is similar to a uniform grid except that a rectilinear grid can adjust the spacing between adjacent grid
points. This allows the rectilinear grid to have tighter sampling in some areas of space, but the points are still constrained
to be aligned with the axes and each other. The irregular spacing of a rectilinear grid is specified by providing a separate
array each for the x, y, and z coordinates.

The vtkm::cont::DataSetBuilderRectilinear class can be used to easily create 2- or 3-dimensional
rectilinear grids. vtkm::cont::DataSetBuilderRectilinear has several versions of a method named
vtkm::cont::DataSetBuilderRectilinear::Create() that takes these coordinate arrays and builds a
vtkm::cont::DataSet out of them. The arrays can be supplied as either standard C arrays or as std::vector ob-
jects, in which case the data in the arrays are copied into the vtkm::cont::DataSet. These arrays can also be passed
as vtkm::cont::ArrayHandle objects (introduced later in this book), in which case the data are shallow copied.

class DataSetBuilderRectilinear

Public Static Functions

template<typename T>
static inline vtkm::cont::DataSet Create(const std::vector<T> &xvals, const std::string &coordNm =

"coords")
Create a 1D retilinear DataSet.

A rectilinear grid is specified with a scalar array for the point coordinates in the x direction. In this form,
the coordinate array is specified with std::vector. The data is copied from the std::vector.

Parameters

• xvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(vtkm::Id nx, T *xvals, const std::string &coordNm = "coords")

Create a 1D retilinear DataSet.

A rectilinear grid is specified with a scalar array for the point coordinates in the x direction. In this form,
the coordinate array is specified with a standard C array. The data is copied from the array.

Parameters

• nx – [in] The size of the grid in the x direction (and length of the xvals array).

• xvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

42 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

template<typename T>
static inline vtkm::cont::DataSet Create(const vtkm::cont::ArrayHandle<T> &xvals, const std::string

&coordNm = "coords")
Create a 1D retilinear DataSet.

A rectilinear grid is specified with a scalar array for the point coordinates in the x direction. In this form,
the coordinate array is specified with vtkm::cont::ArrayHandle. The ArrayHandle is shared with the
DataSet, so changing the ArrayHandle changes the DataSet.

Parameters

• xvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const std::vector<T> &xvals, const std::vector<T> &yvals, const

std::string &coordNm = "coords")
Create a 2D retilinear DataSet.

A rectilinear grid is specified with separate arrays for the point coordinates in the x and y directions. In this
form, the coordinate arrays are specified with std::vector. The data is copied from the std::vectors.

Parameters

• xvals – [in] An array of coordinates to use along the x dimension.

• yvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(vtkm::Id nx, vtkm::Id ny, T *xvals, T *yvals, const std::string

&coordNm = "coords")
Create a 2D retilinear DataSet.

A rectilinear grid is specified with separate arrays for the point coordinates in the x and y directions. In this
form, the coordinate arrays are specified with standard C arrays. The data is copied from the arrays.

Parameters

• nx – [in] The size of the grid in the x direction (and length of the xvals array).

• ny – [in] The size of the grid in the x direction (and length of the yvals array).

• xvals – [in] An array of coordinates to use along the x dimension.

• yvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const vtkm::cont::ArrayHandle<T> &xvals, const

vtkm::cont::ArrayHandle<T> &yvals, const std::string &coordNm =
"coords")

Create a 2D retilinear DataSet.

A rectilinear grid is specified with separate arrays for the point coordinates in the x and y directions. In
this form, the coordinate arrays are specified with vtkm::cont::ArrayHandle. The ArrayHandles are
shared with the DataSet, so changing the ArrayHandles changes the DataSet.

Parameters

• xvals – [in] An array of coordinates to use along the x dimension.

7.1. Building Data Sets 43

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

• yvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(vtkm::Id nx, vtkm::Id ny, vtkm::Id nz, T *xvals, T *yvals, T *zvals,

const std::string &coordNm = "coords")
Create a 3D retilinear DataSet.

A rectilinear grid is specified with separate arrays for the point coordinates in the x, y, and z directions. In
this form, the coordinate arrays are specified with standard C arrays. The data is copied from the arrays.

Parameters

• nx – [in] The size of the grid in the x direction (and length of the xvals array).

• ny – [in] The size of the grid in the x direction (and length of the yvals array).

• nz – [in] The size of the grid in the x direction (and length of the zvals array).

• xvals – [in] An array of coordinates to use along the x dimension.

• yvals – [in] An array of coordinates to use along the x dimension.

• zvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const std::vector<T> &xvals, const std::vector<T> &yvals, const

std::vector<T> &zvals, const std::string &coordNm = "coords")
Create a 3D retilinear DataSet.

A rectilinear grid is specified with separate arrays for the point coordinates in the x, y, and z direc-
tions. In this form, the coordinate arrays are specified with std::vector. The data is copied from the
std::vectors.

Parameters

• xvals – [in] An array of coordinates to use along the x dimension.

• yvals – [in] An array of coordinates to use along the x dimension.

• zvals – [in] An array of coordinates to use along the x dimension.

• coordNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const vtkm::cont::ArrayHandle<T> &xvals, const

vtkm::cont::ArrayHandle<T> &yvals, const
vtkm::cont::ArrayHandle<T> &zvals, const std::string &coordNm =
"coords")

Create a 3D retilinear DataSet.

A rectilinear grid is specified with separate arrays for the point coordinates in the x, y, and z directions. In
this form, the coordinate arrays are specified with vtkm::cont::ArrayHandle. The ArrayHandles are
shared with the DataSet, so changing the ArrayHandles changes the DataSet.

Parameters

• xvals – [in] An array of coordinates to use along the x dimension.

• yvals – [in] An array of coordinates to use along the x dimension.

• zvals – [in] An array of coordinates to use along the x dimension.

44 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

• coordNm – [in] (optional) The name to register the coordinates as.

The following example creates a vtkm::cont::DataSet containing a rectilinear grid with 201 × 201 × 101 points
with different irregular spacing along each axis.

Example 3: Creating a rectilinear grid.

1 // Make x coordinates range from -4 to 4 with tighter spacing near 0.
2 std::vector<vtkm::Float32> xCoordinates;
3 for (vtkm::Float32 x = -2.0f; x <= 2.0f; x += 0.02f)
4 {
5 xCoordinates.push_back(vtkm::CopySign(x * x, x));
6 }
7

8 // Make y coordinates range from 0 to 2 with tighter spacing near 2.
9 std::vector<vtkm::Float32> yCoordinates;

10 for (vtkm::Float32 y = 0.0f; y <= 4.0f; y += 0.02f)
11 {
12 yCoordinates.push_back(vtkm::Sqrt(y));
13 }
14

15 // Make z coordinates rangefrom -1 to 1 with even spacing.
16 std::vector<vtkm::Float32> zCoordinates;
17 for (vtkm::Float32 z = -1.0f; z <= 1.0f; z += 0.02f)
18 {
19 zCoordinates.push_back(z);
20 }
21

22 vtkm::cont::DataSetBuilderRectilinear dataSetBuilder;
23

24 vtkm::cont::DataSet dataSet =
25 dataSetBuilder.Create(xCoordinates, yCoordinates, zCoordinates);

7.1.3 Creating Explicit Meshes

An explicit mesh is an arbitrary collection of cells with arbitrary connections. It can have multiple different types of
cells. Explicit meshes are also known as unstructured grids. Explicit meshes can contain cells of different shapes.
The shapes that VTK-m currently supports are listed in Figure 1. Each shape is identified using either a numeric
identifier, provided by VTK-m with identifiers of the form vtkm::CELL_SHAPE_* or special tag structures of the form
vtkm::CellSetTag*. Cell shapes are discussed in detail in Chapter 26 (Working with Cells).

The cells of an explicit mesh are defined with the following 3 arrays, which are depicted graphically in Figure 2.

Shapes
An array of ids identifying the shape of the cell. Each value is a vtkm::UInt8 and should be set to one of the
vtkm::CELL_SHAPE_* constants. The shapes and their identifiers are shown in Figure 1. The size of this array
is equal to the number of cells in the set.

Connectivity
An array that lists all the points that comprise each cell. Each entry in the array is a vtkm::Id giving the point
id associated with a vertex of a cell. The points for each cell are given in a prescribed order for each shape, which
is also shown in Figure 1. The point indices are stored consecutively from the first cell to the last.

Offsets
An array of vtkm::Id’s pointing to the index in the connectivity array where the points for a particular cell

7.1. Building Data Sets 45

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 1: Basic Cell Shapes.

46 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 2: An example explicit mesh.

starts. The size of this array is equal to the number of cells in the set plus 1. The first entry is expected to be 0
(since the connectivity of the first cell is at the start of the connectivity array). The last entry, which does not
correspond to any cell, should be the size of the connectivity array.

One important item that is missing from this list of arrays is a count of the number of indices associated with each cell.
This is not explicitly represented in VTK-m’s mesh structure because it can be implicitly derived from the offsets array
by subtracting consecutive entries. However, it is usually the case when building an explicit mesh that you will have an
array of these counts rather than the offsets. It is for this reason that VTK-m contains mechanisms to build an explicit
data set with a “num indices” arrays rather than an offsets array.

The vtkm::cont::DataSetBuilderExplicit class can be used to create data sets with ex-
plicit meshes. vtkm::cont::DataSetBuilderExplicit has several versions of a method named
vtkm::cont::DataSetBuilderExplicit::Create(). Generally, these methods take the shapes, number of
indices, and connectivity arrays as well as an array of point coordinates.

class DataSetBuilderExplicit

7.1. Building Data Sets 47

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Static Functions

template<typename T>
static inline vtkm::cont::DataSet Create(const std::vector<T> &xVals, const std::vector<vtkm::UInt8>

&shapes, const std::vector<vtkm::IdComponent> &numIndices,
const std::vector<vtkm::Id> &connectivity, const std::string
&coordsNm = "coords")

Create a 1D DataSet with arbitrary cell connectivity.

The cell connectivity is specified with arrays defining the shape and point connections of each cell. In this
form, the cell connectivity and coordinates are specified as std::vector and the data will be copied to
create the data object.

Parameters

• xVals – [in] An array providing the x coordinate of each point.

• shapes – [in] An array of shapes for each cell. Each entry should be one of the
vtkm::CELL_SHAPE_* values identifying the shape of the corresponding cell.

• numIndices – [in] An array containing for each cell the number of points incident on that
cell.

• connectivity – [in] An array specifying for each cell the indicies of points incident on
each cell. Each cell has a short array of indices that reference points in the coords array.
The length of each of these short arrays is specified by the numIndices array. These variable
length arrays are tightly packed together in this connectivity array.

• coordsNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const std::vector<T> &xVals, const std::vector<T> &yVals, const

std::vector<vtkm::UInt8> &shapes, const
std::vector<vtkm::IdComponent> &numIndices, const
std::vector<vtkm::Id> &connectivity, const std::string &coordsNm =
"coords")

Create a 2D DataSet with arbitrary cell connectivity.

The cell connectivity is specified with arrays defining the shape and point connections of each cell. In this
form, the cell connectivity and coordinates are specified as std::vector and the data will be copied to
create the data object.

Parameters

• xVals – [in] An array providing the x coordinate of each point.

• yVals – [in] An array providing the x coordinate of each point.

• shapes – [in] An array of shapes for each cell. Each entry should be one of the
vtkm::CELL_SHAPE_* values identifying the shape of the corresponding cell.

• numIndices – [in] An array containing for each cell the number of points incident on that
cell.

• connectivity – [in] An array specifying for each cell the indicies of points incident on
each cell. Each cell has a short array of indices that reference points in the coords array.
The length of each of these short arrays is specified by the numIndices array. These variable
length arrays are tightly packed together in this connectivity array.

• coordsNm – [in] (optional) The name to register the coordinates as.

template<typename T>

48 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::cont::DataSet Create(const std::vector<T> &xVals, const std::vector<T> &yVals, const
std::vector<T> &zVals, const std::vector<vtkm::UInt8> &shapes,
const std::vector<vtkm::IdComponent> &numIndices, const
std::vector<vtkm::Id> &connectivity, const std::string &coordsNm =
"coords")

Create a 3D DataSet with arbitrary cell connectivity.

The cell connectivity is specified with arrays defining the shape and point connections of each cell. In this
form, the cell connectivity and coordinates are specified as std::vector and the data will be copied to
create the data object.

Parameters

• xVals – [in] An array providing the x coordinate of each point.

• yVals – [in] An array providing the x coordinate of each point.

• zVals – [in] An array providing the x coordinate of each point.

• shapes – [in] An array of shapes for each cell. Each entry should be one of the
vtkm::CELL_SHAPE_* values identifying the shape of the corresponding cell.

• numIndices – [in] An array containing for each cell the number of points incident on that
cell.

• connectivity – [in] An array specifying for each cell the indicies of points incident on
each cell. Each cell has a short array of indices that reference points in the coords array.
The length of each of these short arrays is specified by the numIndices array. These variable
length arrays are tightly packed together in this connectivity array.

• coordsNm – [in] (optional) The name to register the coordinates as.

template<typename T>
static inline vtkm::cont::DataSet Create(const std::vector<vtkm::Vec<T , 3>> &coords, const

std::vector<vtkm::UInt8> &shapes, const
std::vector<vtkm::IdComponent> &numIndices, const
std::vector<vtkm::Id> &connectivity, const std::string &coordsNm =
"coords")

Create a 3D DataSet with arbitrary cell connectivity.

The cell connectivity is specified with arrays defining the shape and point connections of each cell. In this
form, the cell connectivity and coordinates are specified as std::vector and the data will be copied to
create the data object.

Parameters

• coords – [in] An array of point coordinates.

• shapes – [in] An array of shapes for each cell. Each entry should be one of the
vtkm::CELL_SHAPE_* values identifying the shape of the corresponding cell.

• numIndices – [in] An array containing for each cell the number of points incident on that
cell.

• connectivity – [in] An array specifying for each cell the indicies of points incident on
each cell. Each cell has a short array of indices that reference points in the coords array.
The length of each of these short arrays is specified by the numIndices array. These variable
length arrays are tightly packed together in this connectivity array.

• coordsNm – [in] (optional) The name to register the coordinates as.

template<typename T>

7.1. Building Data Sets 49

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::cont::DataSet Create(const vtkm::cont::ArrayHandle<vtkm::Vec<T , 3>> &coords, const
vtkm::cont::ArrayHandle<vtkm::UInt8> &shapes, const
vtkm::cont::ArrayHandle<vtkm::IdComponent> &numIndices,
const vtkm::cont::ArrayHandle<vtkm::Id> &connectivity, const
std::string &coordsNm = "coords")

Create a 3D DataSet with arbitrary cell connectivity.

The cell connectivity is specified with arrays defining the shape and point connections of each cell. In this
form, the cell connectivity and coordinates are specified as ArrayHandle and the memory will be shared
with the created data object. That said, the DataSet construction will generate a new array for offsets.

Parameters

• coords – [in] An array of point coordinates.

• shapes – [in] An array of shapes for each cell. Each entry should be one of the
vtkm::CELL_SHAPE_* values identifying the shape of the corresponding cell.

• numIndices – [in] An array containing for each cell the number of points incident on that
cell.

• connectivity – [in] An array specifying for each cell the indicies of points incident on
each cell. Each cell has a short array of indices that reference points in the coords array.
The length of each of these short arrays is specified by the numIndices array. These variable
length arrays are tightly packed together in this connectivity array.

• coordsNm – [in] (optional) The name to register the coordinates as.

template<typename T, typename CellShapeTag>
static inline vtkm::cont::DataSet Create(const std::vector<vtkm::Vec<T , 3>> &coords, CellShapeTag tag,

vtkm::IdComponent numberOfPointsPerCell, const
std::vector<vtkm::Id> &connectivity, const std::string &coordsNm =
"coords")

Create a 3D DataSet with arbitrary cell connectivity for a single cell type.

The cell connectivity is specified with an array defining the point connections of each cell. All the cells in
the DataSet are of the same shape and contain the same number of incident points. In this form, the cell
connectivity and coordinates are specified as std::vector and the data will be copied to create the data
object.

Parameters

• coords – [in] An array of point coordinates.

• tag – [in] A tag object representing the shape of all the cells in the mesh.
Cell shape tag objects have a name of the form vtkm::CellShapeTag* such as
vtkm::CellShapeTagTriangle or vtkm::CellShapeTagHexahedron. To specify a
cell shape determined at runtime, use vtkm::CellShapeTagGeneric.

• numberOfPointsPerCell – [in] The number of points that are incident to each cell.

• connectivity – [in] An array specifying for each cell the indicies of points incident on
each cell. Each cell has a short array of indices that reference points in the coords array.
The length of each of these short arrays is specified by numberOfPointsPerCell. These
short arrays are tightly packed together in this connectivity array.

• coordsNm – [in] (optional) The name to register the coordinates as.

template<typename T, typename CellShapeTag>

50 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::cont::DataSet Create(const vtkm::cont::ArrayHandle<vtkm::Vec<T , 3>> &coords,
CellShapeTag tag, vtkm::IdComponent numberOfPointsPerCell,
const vtkm::cont::ArrayHandle<vtkm::Id> &connectivity, const
std::string &coordsNm = "coords")

Create a 3D DataSet with arbitrary cell connectivity for a single cell type.

The cell connectivity is specified with an array defining the point connections of each cell. All the cells
in the DataSet are of the same shape and contain the same number of incident points. In this form, the
cell connectivity and coordinates are specified as ArrayHandle and the memory will be shared with the
created data object.

Parameters

• coords – [in] An array of point coordinates.

• tag – [in] A tag object representing the shape of all the cells in the mesh.
Cell shape tag objects have a name of the form vtkm::CellShapeTag* such as
vtkm::CellShapeTagTriangle or vtkm::CellShapeTagHexahedron. To specify a
cell shape determined at runtime, use vtkm::CellShapeTagGeneric.

• numberOfPointsPerCell – [in] The number of points that are incident to each cell.

• connectivity – [in] An array specifying for each cell the indicies of points incident on
each cell. Each cell has a short array of indices that reference points in the coords array.
The length of each of these short arrays is specified by numberOfPointsPerCell. These
short arrays are tightly packed together in this connectivity array.

• coordsNm – [in] (optional) The name to register the coordinates as.

The following example creates a mesh like the one shown in Figure 2.

Example 4: Creating an explicit mesh with
vtkm::cont::DataSetBuilderExplicit.

1 // Array of point coordinates.
2 std::vector<vtkm::Vec3f_32> pointCoordinates;
3 pointCoordinates.push_back(vtkm::Vec3f_32(1.1f, 0.0f, 0.0f));
4 pointCoordinates.push_back(vtkm::Vec3f_32(0.2f, 0.4f, 0.0f));
5 pointCoordinates.push_back(vtkm::Vec3f_32(0.9f, 0.6f, 0.0f));
6 pointCoordinates.push_back(vtkm::Vec3f_32(1.4f, 0.5f, 0.0f));
7 pointCoordinates.push_back(vtkm::Vec3f_32(1.8f, 0.3f, 0.0f));
8 pointCoordinates.push_back(vtkm::Vec3f_32(0.4f, 1.0f, 0.0f));
9 pointCoordinates.push_back(vtkm::Vec3f_32(1.0f, 1.2f, 0.0f));

10 pointCoordinates.push_back(vtkm::Vec3f_32(1.5f, 0.9f, 0.0f));
11

12 // Array of shapes.
13 std::vector<vtkm::UInt8> shapes;
14 shapes.push_back(vtkm::CELL_SHAPE_TRIANGLE);
15 shapes.push_back(vtkm::CELL_SHAPE_QUAD);
16 shapes.push_back(vtkm::CELL_SHAPE_TRIANGLE);
17 shapes.push_back(vtkm::CELL_SHAPE_POLYGON);
18 shapes.push_back(vtkm::CELL_SHAPE_TRIANGLE);
19

20 // Array of number of indices per cell.
21 std::vector<vtkm::IdComponent> numIndices;
22 numIndices.push_back(3);
23 numIndices.push_back(4);

(continues on next page)

7.1. Building Data Sets 51

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

24 numIndices.push_back(3);
25 numIndices.push_back(5);
26 numIndices.push_back(3);
27

28 // Connectivity array.
29 std::vector<vtkm::Id> connectivity;
30 connectivity.push_back(0); // Cell 0
31 connectivity.push_back(2);
32 connectivity.push_back(1);
33 connectivity.push_back(0); // Cell 1
34 connectivity.push_back(4);
35 connectivity.push_back(3);
36 connectivity.push_back(2);
37 connectivity.push_back(1); // Cell 2
38 connectivity.push_back(2);
39 connectivity.push_back(5);
40 connectivity.push_back(2); // Cell 3
41 connectivity.push_back(3);
42 connectivity.push_back(7);
43 connectivity.push_back(6);
44 connectivity.push_back(5);
45 connectivity.push_back(3); // Cell 4
46 connectivity.push_back(4);
47 connectivity.push_back(7);
48

49 // Copy these arrays into a DataSet.
50 vtkm::cont::DataSetBuilderExplicit dataSetBuilder;
51

52 vtkm::cont::DataSet dataSet =
53 dataSetBuilder.Create(pointCoordinates, shapes, numIndices, connectivity);

Often it is awkward to build your own arrays and then pass them to vtkm::cont::DataSetBuilderExplicit.
There also exists an alternate builder class named vtkm::cont::DataSetBuilderExplicitIterative that al-
lows you to specify each cell and point one at a time rather than all at once. This is done by calling one of
the versions of vtkm::cont::DataSetBuilderExplicitIterative::AddPoint() and one of the versions of
vtkm::cont::DataSetBuilderExplicitIterative::AddCell() for each point and cell, respectively.

class DataSetBuilderExplicitIterative
Helper class to build a DataSet by iteratively adding points and cells.

This class allows you to specify a DataSet by adding points and cells one at a time.

Public Functions

void Begin(const std::string &coordName = "coords")
Begin defining points and cells of a DataSet.

The state of this object is initialized to be ready to use AddPoint and AddCell methods.

Parameters
coordName – [in] (optional) The name to register the coordinates as.

52 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::Id AddPoint(const vtkm::Vec3f &pt)
Add a point to the DataSet.

Parameters
pt – [in] The coordinates of the point to add.

Returns
The index of the newly created point.

template<typename T>
inline vtkm::Id AddPoint(const vtkm::Vec<T , 3> &pt)

Add a point to the DataSet.

Parameters
pt – [in] The coordinates of the point to add.

Returns
The index of the newly created point.

vtkm::Id AddPoint(const vtkm::FloatDefault &x, const vtkm::FloatDefault &y, const vtkm::FloatDefault &z
= 0)

Add a point to the DataSet.

Parameters

• x – [in] The x coordinate of the newly created point.

• y – [in] The y coordinate of the newly created point.

• z – [in] The z coordinate of the newly created point.

Returns
The index of the newly created point.

template<typename T>
inline vtkm::Id AddPoint(const T &x, const T &y, const T &z = 0)

Add a point to the DataSet.

Parameters

• x – [in] The x coordinate of the newly created point.

• y – [in] The y coordinate of the newly created point.

• z – [in] The z coordinate of the newly created point.

Returns
The index of the newly created point.

void AddCell(const vtkm::UInt8 &shape, const std::vector<vtkm::Id> &conn)
Add a cell to the DataSet.

Parameters

• shape – [in] Identifies the shape of the cell. Use one of the vtkm::CELL_SHAPE_* values.

• conn – [in] List of indices to the incident points.

void AddCell(const vtkm::UInt8 &shape, const vtkm::Id *conn, const vtkm::IdComponent &n)
Add a cell to the DataSet.

Parameters

• shape – [in] Identifies the shape of the cell. Use one of the vtkm::CELL_SHAPE_* values.

7.1. Building Data Sets 53

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

• conn – [in] List of indices to the incident points.

• n – [in] The number of incident points (and the length of the conn array).

void AddCell(vtkm::UInt8 shape)
Start adding a cell to the DataSet.

The incident points are later added one at a time using AddCellPoint. The cell is completed the next time
AddCell or Create is called.

Parameters
shape – [in] Identifies the shape of the cell. Use one of the

void AddCellPoint(vtkm::Id pointIndex)
Add an incident point to the current cell.

Parameters
pointIndex – [in] Index to the incident point.

vtkm::cont::DataSet Create()
Produce the DataSet.

The points and cells previously added are finalized and the resulting DataSet is returned.

The next example also builds the mesh shown in Figure 2 except this time using
vtkm::cont::DataSetBuilderExplicitIterative.

Example 5: Creating an explicit mesh with
vtkm::cont::DataSetBuilderExplicitIterative.

1 vtkm::cont::DataSetBuilderExplicitIterative dataSetBuilder;
2

3 dataSetBuilder.AddPoint(1.1, 0.0, 0.0);
4 dataSetBuilder.AddPoint(0.2, 0.4, 0.0);
5 dataSetBuilder.AddPoint(0.9, 0.6, 0.0);
6 dataSetBuilder.AddPoint(1.4, 0.5, 0.0);
7 dataSetBuilder.AddPoint(1.8, 0.3, 0.0);
8 dataSetBuilder.AddPoint(0.4, 1.0, 0.0);
9 dataSetBuilder.AddPoint(1.0, 1.2, 0.0);

10 dataSetBuilder.AddPoint(1.5, 0.9, 0.0);
11

12 dataSetBuilder.AddCell(vtkm::CELL_SHAPE_TRIANGLE);
13 dataSetBuilder.AddCellPoint(0);
14 dataSetBuilder.AddCellPoint(2);
15 dataSetBuilder.AddCellPoint(1);
16

17 dataSetBuilder.AddCell(vtkm::CELL_SHAPE_QUAD);
18 dataSetBuilder.AddCellPoint(0);
19 dataSetBuilder.AddCellPoint(4);
20 dataSetBuilder.AddCellPoint(3);
21 dataSetBuilder.AddCellPoint(2);
22

23 dataSetBuilder.AddCell(vtkm::CELL_SHAPE_TRIANGLE);
24 dataSetBuilder.AddCellPoint(1);
25 dataSetBuilder.AddCellPoint(2);
26 dataSetBuilder.AddCellPoint(5);
27

(continues on next page)

54 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

28 dataSetBuilder.AddCell(vtkm::CELL_SHAPE_POLYGON);
29 dataSetBuilder.AddCellPoint(2);
30 dataSetBuilder.AddCellPoint(3);
31 dataSetBuilder.AddCellPoint(7);
32 dataSetBuilder.AddCellPoint(6);
33 dataSetBuilder.AddCellPoint(5);
34

35 dataSetBuilder.AddCell(vtkm::CELL_SHAPE_TRIANGLE);
36 dataSetBuilder.AddCellPoint(3);
37 dataSetBuilder.AddCellPoint(4);
38 dataSetBuilder.AddCellPoint(7);
39

40 vtkm::cont::DataSet dataSet = dataSetBuilder.Create();

7.1.4 Add Fields

In addition to creating the geometric structure of a data set, it is usually important to add fields to the data. Fields de-
scribe numerical data associated with the topological elements in a cell. They often represent a physical quantity (such
as temperature, mass, or volume fraction) but can also represent other information (such as indices or classifications).

The easiest way to define fields in a data set is to use the vtkm::cont::DataSet::AddPointField() and
vtkm::cont::DataSet::AddCellField() methods. Each of these methods take a requisite field name and the
array with with field data.

Both vtkm::cont::DataSet::AddPointField() and vtkm::cont::DataSet::AddCellField() are over-
loaded to accept arrays of data in different structures. Field arrays can be passed as standard C arrays or as
std::vector’s, in which case the data are copied. Field arrays can also be passed in a ArrayHandle (introduced
later in this book), in which case the data are not copied.

inline void vtkm::cont::DataSet::AddPointField(const std::string &fieldName, const
vtkm::cont::UnknownArrayHandle &field)

Adds a point field of a given name to the DataSet.

Note that the indexing of fields is not the same as the order in which they are added, and that adding a field can
arbitrarily reorder the integer indexing of all the fields. To retrieve a specific field, retrieve the field by name, not
by integer index.

template<typename T>
inline void vtkm::cont::DataSet::AddPointField(const std::string &fieldName, const std::vector<T> &field)

Adds a point field of a given name to the DataSet.

Note that the indexing of fields is not the same as the order in which they are added, and that adding a field can
arbitrarily reorder the integer indexing of all the fields. To retrieve a specific field, retrieve the field by name, not
by integer index.

template<typename T>
inline void vtkm::cont::DataSet::AddPointField(const std::string &fieldName, const T *field, const vtkm::Id

&n)
Adds a point field of a given name to the DataSet.

Note that the indexing of fields is not the same as the order in which they are added, and that adding a field can
arbitrarily reorder the integer indexing of all the fields. To retrieve a specific field, retrieve the field by name, not
by integer index.

7.1. Building Data Sets 55

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void vtkm::cont::DataSet::AddCellField(const std::string &fieldName, const
vtkm::cont::UnknownArrayHandle &field)

Adds a cell field of a given name to the DataSet.

Note that the indexing of fields is not the same as the order in which they are added, and that adding a field can
arbitrarily reorder the integer indexing of all the fields. To retrieve a specific field, retrieve the field by name, not
by integer index.

template<typename T>
inline void vtkm::cont::DataSet::AddCellField(const std::string &fieldName, const std::vector<T> &field)

Adds a cell field of a given name to the DataSet.

Note that the indexing of fields is not the same as the order in which they are added, and that adding a field can
arbitrarily reorder the integer indexing of all the fields. To retrieve a specific field, retrieve the field by name, not
by integer index.

template<typename T>
inline void vtkm::cont::DataSet::AddCellField(const std::string &fieldName, const T *field, const vtkm::Id

&n)
Adds a cell field of a given name to the DataSet.

Note that the indexing of fields is not the same as the order in which they are added, and that adding a field can
arbitrarily reorder the integer indexing of all the fields. To retrieve a specific field, retrieve the field by name, not
by integer index.

The following (somewhat contrived) example defines fields for a uniform grid that identify which points and cells are
on the boundary of the mesh.

Example 6: Adding fields to a vtkm::cont::DataSet.

1 // Make a simple structured data set.
2 const vtkm::Id3 pointDimensions(20, 20, 10);
3 const vtkm::Id3 cellDimensions = pointDimensions - vtkm::Id3(1, 1, 1);
4 vtkm::cont::DataSetBuilderUniform dataSetBuilder;
5 vtkm::cont::DataSet dataSet = dataSetBuilder.Create(pointDimensions);
6

7 // Create a field that identifies points on the boundary.
8 std::vector<vtkm::UInt8> boundaryPoints;
9 for (vtkm::Id zIndex = 0; zIndex < pointDimensions[2]; zIndex++)

10 {
11 for (vtkm::Id yIndex = 0; yIndex < pointDimensions[1]; yIndex++)
12 {
13 for (vtkm::Id xIndex = 0; xIndex < pointDimensions[0]; xIndex++)
14 {
15 if ((xIndex == 0) || (xIndex == pointDimensions[0] - 1) || (yIndex == 0) ||
16 (yIndex == pointDimensions[1] - 1) || (zIndex == 0) ||
17 (zIndex == pointDimensions[2] - 1))
18 {
19 boundaryPoints.push_back(1);
20 }
21 else
22 {
23 boundaryPoints.push_back(0);
24 }
25 }
26 }

(continues on next page)

56 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

27 }
28

29 dataSet.AddPointField("boundary_points", boundaryPoints);
30

31 // Create a field that identifies cells on the boundary.
32 std::vector<vtkm::UInt8> boundaryCells;
33 for (vtkm::Id zIndex = 0; zIndex < cellDimensions[2]; zIndex++)
34 {
35 for (vtkm::Id yIndex = 0; yIndex < cellDimensions[1]; yIndex++)
36 {
37 for (vtkm::Id xIndex = 0; xIndex < cellDimensions[0]; xIndex++)
38 {
39 if ((xIndex == 0) || (xIndex == cellDimensions[0] - 1) || (yIndex == 0) ||
40 (yIndex == cellDimensions[1] - 1) || (zIndex == 0) ||
41 (zIndex == cellDimensions[2] - 1))
42 {
43 boundaryCells.push_back(1);
44 }
45 else
46 {
47 boundaryCells.push_back(0);
48 }
49 }
50 }
51 }
52

53 dataSet.AddCellField("boundary_cells", boundaryCells);

7.2 Cell Sets

A cell set determines the topological structure of the data in a data set.

class CellSet
Defines the topological structure of the data in a DataSet.

Fundamentally, any cell set is a collection of cells, which typically (but not always) represent some region in
space.

Subclassed by vtkm::cont::CellSetExplicit< vtkm::cont::ArrayHandleConstant< vtkm::UInt8 >::Stor-
ageTag, ::vtkm::cont::StorageTagBasic, vtkm::cont::ArrayHandleCounting< vtkm::Id >::StorageTag
>, vtkm::cont::CellSetExplicit< ShapesStorageTag, ConnectivityStorageTag, OffsetsStorageTag >,
vtkm::cont::CellSetExtrude, vtkm::cont::CellSetPermutation< OriginalCellSetType_, PermutationArray-
HandleType_ >, vtkm::cont::CellSetStructured< DIMENSION >

7.2. Cell Sets 57

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

virtual vtkm::Id GetNumberOfCells() const = 0
Get the number of cells in the topology.

virtual vtkm::Id GetNumberOfPoints() const = 0
Get the number of points in the topology.

virtual vtkm::UInt8 GetCellShape(vtkm::Id id) const = 0
Get the shell shape of a particular cell.

virtual vtkm::IdComponent GetNumberOfPointsInCell(vtkm::Id id) const = 0
Get the number of points incident to a particular cell.

virtual void GetCellPointIds(vtkm::Id id, vtkm::Id *ptids) const = 0
Get a list of points incident to a particular cell.

virtual std::shared_ptr<CellSet> NewInstance() const = 0
Return a new CellSet that is the same derived class.

virtual void DeepCopy(const CellSet *src) = 0
Copy the provided CellSet into this object.

The provided CellSet must be the same type as this one.

virtual void PrintSummary(std::ostream&) const = 0
Print a summary of this cell set.

virtual void ReleaseResourcesExecution() = 0
Remove the CellSet from any devices.

Any memory used on a device to store this object will be deleted. However, the data will still remain on
the host.

3D cells are made up of points, edges, and faces. (2D cells have only points and edges, and 1D cells have only points.)
Figure 3 shows the relationship between a cell’s shape and these topological elements. The arrangement of these points,
edges, and faces is defined by the shape of the cell, which prescribes a specific ordering of each. The basic cell shapes
provided by VTK-m are discussed in detail in Chapter 26 (Working with Cells).

Figure 3: The relationship between a cell shape and its topological elements (points, edges, and faces).

There are multiple ways to express the connections of a cell set, each with different benefits and restrictions. These
different cell set types are managed by different cell set classes in VTK-m. All VTK-m cell set classes inherit from
vtkm::cont::CellSet. The two basic types of cell sets are structured and explicit, and there are several variations
of these types.

58 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

7.2.1 Structured Cell Sets

template<vtkm::IdComponent DIMENSION>

class CellSetStructured : public vtkm::cont::CellSet
Defines a 1-, 2-, or 3-dimensional structured grid of points.

The structured cells form lines, quadrilaterals, or hexahedra for 1-, 2-, or 3-dimensions, respectively, to connect
th epoints. The topology is specified by simply providing the dimensions, which is the number of points in the i,
j, and k directions of the grid of points.

Public Functions

inline virtual vtkm::Id GetNumberOfCells() const override
Get the number of cells in the topology.

inline virtual vtkm::Id GetNumberOfPoints() const override
Get the number of points in the topology.

inline virtual void ReleaseResourcesExecution() override
Remove the CellSet from any devices.

Any memory used on a device to store this object will be deleted. However, the data will still remain on
the host.

inline void SetPointDimensions(SchedulingRangeType dimensions)
Set the dimensions of the structured array of points.

inline SchedulingRangeType GetPointDimensions() const
Get the dimensions of the points.

inline virtual vtkm::IdComponent GetNumberOfPointsInCell(vtkm::Id = 0) const override
Get the number of points incident to a particular cell.

inline virtual vtkm::UInt8 GetCellShape(vtkm::Id = 0) const override
Get the shell shape of a particular cell.

inline virtual void GetCellPointIds(vtkm::Id id, vtkm::Id *ptids) const override
Get a list of points incident to a particular cell.

inline virtual std::shared_ptr<CellSet> NewInstance() const override
Return a new CellSet that is the same derived class.

inline virtual void DeepCopy(const CellSet *src) override
Copy the provided CellSet into this object.

The provided CellSet must be the same type as this one.

inline virtual void PrintSummary(std::ostream &out) const override
Print a summary of this cell set.

The number of points in a vtkm::cont::CellSetStructured is implicitly 𝑖 × 𝑗 × 𝑘 and the number of cells is
implicitly (𝑖− 1)× (𝑗 − 1)× (𝑘 − 1) (for 3D grids). Figure 4 demonstrates this arrangement.

The big advantage of using vtkm::cont::CellSetStructured to define a cell set is that it is very space efficient
because the entire topology can be defined by the three integers specifying the dimensions. Also, algorithms can be op-
timized for vtkm::cont::CellSetStructured’s regular nature. However, vtkm::cont::CellSetStructured’s

7.2. Cell Sets 59

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 4: The arrangement of points and cells in a 3D structured grid.

60 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

strictly regular grid also limits its applicability. A structured cell set can only be a dense grid of lines, quadrilaterals,
or hexahedra. It cannot represent irregular data well.

Many data models in other software packages, such as the one for VTK, make a distinction between uniform,
rectilinear, and curvilinear grids. VTK-m’s cell sets do not. All three of these grid types are represented by
vtkm::cont::CellSetStructured . This is because in a VTK-m data set the cell set and the coordinate system
are defined independently and used interchangeably. A structured cell set with uniform point coordinates makes a uni-
form grid. A structured cell set with point coordinates defined irregularly along coordinate axes makes a rectilinear
grid. And a structured cell set with arbitrary point coordinates makes a curvilinear grid. The point coordinates are
defined by the data set’s coordinate system, which is discussed in Section 7.4 (Coordinate Systems).

7.2.2 Explicit Cell Sets

template<typename ShapesStorageTag = ::vtkm::cont::StorageTagBasic, typename ConnectivityStorageTag =
::vtkm::cont::StorageTagBasic, typename OffsetsStorageTag = ::vtkm::cont::StorageTagBasic>
class CellSetExplicit : public vtkm::cont::CellSet

Defines an irregular collection of cells.

The cells can be of different types and connected in arbitrary ways. This is done by explicitly providing for each
cell a sequence of points that defines the cell.

Public Functions

virtual vtkm::Id GetNumberOfCells() const override
Get the number of cells in the topology.

virtual vtkm::Id GetNumberOfPoints() const override
Get the number of points in the topology.

virtual void PrintSummary(std::ostream &out) const override
Print a summary of this cell set.

virtual void ReleaseResourcesExecution() override
Remove the CellSet from any devices.

Any memory used on a device to store this object will be deleted. However, the data will still remain on
the host.

virtual std::shared_ptr<CellSet> NewInstance() const override
Return a new CellSet that is the same derived class.

virtual void DeepCopy(const CellSet *src) override
Copy the provided CellSet into this object.

The provided CellSet must be the same type as this one.

virtual vtkm::IdComponent GetNumberOfPointsInCell(vtkm::Id cellid) const override
Get the number of points incident to a particular cell.

virtual void GetCellPointIds(vtkm::Id id, vtkm::Id *ptids) const override
Get a list of points incident to a particular cell.

virtual vtkm::UInt8 GetCellShape(vtkm::Id cellid) const override
Get the shell shape of a particular cell.

7.2. Cell Sets 61

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

void PrepareToAddCells(vtkm::Id numCells, vtkm::Id connectivityMaxLen)
Start adding cells one at a time.

After this method is called, AddCell is called repeatedly to add each cell. Once all cells are added, call
CompleteAddingCells.

template<typename IdVecType>
void AddCell(vtkm::UInt8 cellType, vtkm::IdComponent numVertices, const IdVecType &ids)

Add a cell.

This can only be called after AddCell.

void CompleteAddingCells(vtkm::Id numPoints)
Finish adding cells one at a time.

void Fill(vtkm::Id numPoints, const vtkm::cont::ArrayHandle<vtkm::UInt8, ShapesStorageTag>
&cellTypes, const vtkm::cont::ArrayHandle<vtkm::Id, ConnectivityStorageTag> &connectivity,
const vtkm::cont::ArrayHandle<vtkm::Id, OffsetsStorageTag> &offsets)

Set all the cells of the mesh.

This method can be used to fill the memory from another system without copying data.

The types of cell sets are listed in Figure 5.

An explicit cell set is defined with a minimum of three arrays. The first array identifies the shape of each cell. (Identifiers
for cell shapes are shown in Figure 5.) The second array has a sequence of point indices that make up each cell. The
third array identifies an offset into the second array where the point indices for each cell is found plus an extra entry at
the end set to the size of the second array. Figure 6 shows a simple example of an explicit cell set.

An explicit cell set can also identify the number of indices defined for each cell by subtracting consecutive entries in the
offsets array. It is often the case when creating a vtkm::cont::CellSetExplicit that you have an array containing
the number of indices rather than the offsets. Such an array can be converted to an offsets array that can be used with
vtkm::cont::CellSetExplicit by using the vtkm::cont::ConvertNumComponentsToOffsets() convenience
function.

void vtkm::cont::ConvertNumComponentsToOffsets(const vtkm::cont::UnknownArrayHandle
&numComponentsArray,
vtkm::cont::ArrayHandle<vtkm::Id> &offsetsArray,
vtkm::Id &componentsArraySize,
vtkm::cont::DeviceAdapterId device =
vtkm::cont::DeviceAdapterTagAny{})

ConvertNumComponentsToOffsets takes an array of Vec sizes (i.e.

the number of components in each Vec) and returns an array of offsets to a packed array of such Vecs. The
resulting array can be used with ArrayHandleGroupVecVariable.

Note that this function is pre-compiled for some set of ArrayHandle types. If you get a
warning about an inefficient conversion (or the operation fails outright), you might need to use
vtkm::cont::internal::ConvertNumComponentsToOffsetsTemplate.

Parameters

• numComponentsArray – [in] the input array that specifies the number of components in
each group Vec.

• offsetsArray – [out] (optional) the output ArrayHandle, which must have a value type
of vtkm::Id . If the output ArrayHandle is not given, it is returned.

62 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 5: Basic Cell Shapes in a vtkm::cont::CellSetExplicit.

7.2. Cell Sets 63

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 6: Example of cells in a vtkm::cont::CellSetExplicit and the arrays that define them.

• componentsArraySize – [in] (optional) a reference to a vtkm::Id and is filled with the
expected size of the component values array.

• device – [in] (optional) specifies the device on which to run the conversion.

vtkm::cont::CellSetExplicit is a powerful representation for a cell set because it can represent an arbitrary
collection of cells. However, because all connections must be explicitly defined, vtkm::cont::CellSetExplicit
requires a significant amount of memory to represent the topology.

An important specialization of an explicit cell set is vtkm::cont::CellSetSingleType.

template<typename ConnectivityStorageTag = ::vtkm::cont::StorageTagBasic>

class CellSetSingleType : public
vtkm::cont::CellSetExplicit<vtkm::cont::ArrayHandleConstant<vtkm::UInt8>::StorageTag,
::vtkm::cont::StorageTagBasic, vtkm::cont::ArrayHandleCounting<vtkm::Id>::StorageTag>

An explicit cell set with all cells of the same shape.

CellSetSingleType is an explicit cell set constrained to contain cells that all have the same shape and all have
the same number of points. So, for example if you are creating a surface that you know will contain only triangles,
CellSetSingleType is a good representation for these data.

Using CellSetSingleType saves memory because the array of cell shapes and the array of point counts no
longer need to be stored. CellSetSingleType also allows VTK-m to skip some processing and other storage
required for general explicit cell sets.

64 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void PrepareToAddCells(vtkm::Id numCells, vtkm::Id connectivityMaxLen)
Start adding cells one at a time.

After this method is called, AddCell is called repeatedly to add each cell. Once all cells are added, call
CompleteAddingCells.

template<typename IdVecType>
inline void AddCell(vtkm::UInt8 shapeId, vtkm::IdComponent numVertices, const IdVecType &ids)

Add a cell.

This can only be called after AddCell.

inline void CompleteAddingCells(vtkm::Id numPoints)
Finish adding cells one at a time.

inline void Fill(vtkm::Id numPoints, vtkm::UInt8 shapeId, vtkm::IdComponent numberOfPointsPerCell,
const vtkm::cont::ArrayHandle<vtkm::Id, ConnectivityStorageTag> &connectivity)

Set all the cells of the mesh.

This method can be used to fill the memory from another system without copying data.

inline virtual vtkm::UInt8 GetCellShape(vtkm::Id) const override
Get the shell shape of a particular cell.

inline virtual std::shared_ptr<CellSet> NewInstance() const override
Return a new CellSet that is the same derived class.

inline virtual void DeepCopy(const CellSet *src) override
Copy the provided CellSet into this object.

The provided CellSet must be the same type as this one.

inline virtual void PrintSummary(std::ostream &out) const override
Print a summary of this cell set.

7.2.3 Cell Set Permutations

To rearrange, and possibly subsample, cells in a CellSet, use vtkm::cont::CellSetPermutation to define a new
set without copying.

template<typename OriginalCellSetType_, typename PermutationArrayHandleType_ =
vtkm::cont::ArrayHandle<vtkm::Id, ::vtkm::cont::StorageTagBasic>>
class CellSetPermutation : public vtkm::cont::CellSet

Rearranges the cells of one cell set to create another cell set.

This restructuring of cells is not done by copying data to a new structure. Rather, CellSetPermutation estab-
lishes a look-up from one cell structure to another. Cells are permuted on the fly while algorithms are run.

A CellSetPermutation is established by providing a mapping array that for every cell index provides the
equivalent cell index in the cell set being permuted. CellSetPermutation is most often used to mask out cells
in a data set so that algorithms will skip over those cells when running.

7.2. Cell Sets 65

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline CellSetPermutation(const PermutationArrayHandleType &validCellIds, const OriginalCellSetType
&cellset)

Create a CellSetPermutation.

Parameters

• validCellIds – [in] An array that defines the permutation. If index i is value j, then the
ith cell of this cell set will be the same as the jth cell in the original cellset.

• cellset – [in] The original cell set that this one is permuting.

inline const OriginalCellSetType &GetFullCellSet() const
Returns the original CellSet that this one is permuting.

inline const PermutationArrayHandleType &GetValidCellIds() const
Returns the array used to permute the cell indices.

inline virtual vtkm::Id GetNumberOfCells() const override
Get the number of cells in the topology.

inline virtual vtkm::Id GetNumberOfPoints() const override
Get the number of points in the topology.

inline virtual void ReleaseResourcesExecution() override
Remove the CellSet from any devices.

Any memory used on a device to store this object will be deleted. However, the data will still remain on
the host.

inline virtual vtkm::IdComponent GetNumberOfPointsInCell(vtkm::Id cellIndex) const override
Get the number of points incident to a particular cell.

inline virtual vtkm::UInt8 GetCellShape(vtkm::Id id) const override
Get the shell shape of a particular cell.

inline virtual void GetCellPointIds(vtkm::Id id, vtkm::Id *ptids) const override
Get a list of points incident to a particular cell.

inline virtual std::shared_ptr<CellSet> NewInstance() const override
Return a new CellSet that is the same derived class.

inline virtual void DeepCopy(const CellSet *src) override
Copy the provided CellSet into this object.

The provided CellSet must be the same type as this one.

inline void Fill(const PermutationArrayHandleType &validCellIds, const OriginalCellSetType &cellset)
Set the topology.

Parameters

• validCellIds – [in] An array that defines the permutation. If index i is value j, then the
ith cell of this cell set will be the same as the jth cell in the original cellset.

• cellset – [in] The original cell set that this one is permuting.

66 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline virtual void PrintSummary(std::ostream &out) const override
Print a summary of this cell set.

Did You Know?

Although vtkm::cont::CellSetPermutation can mask cells, it cannot mask points. All points from the original
cell set are available in the permuted cell set regardless of whether they are used.

The following example uses vtkm::cont::CellSetPermutation with a counting array to expose every tenth cell.
This provides a simple way to subsample a data set.

Example 7: Subsampling a data set with
vtkm::cont::CellSetPermutation.

1 // Create a simple data set.
2 vtkm::cont::DataSetBuilderUniform dataSetBuilder;
3 vtkm::cont::DataSet originalDataSet = dataSetBuilder.Create(vtkm::Id3(33, 33, 26));
4 vtkm::cont::CellSetStructured<3> originalCellSet;
5 originalDataSet.GetCellSet().AsCellSet(originalCellSet);
6

7 // Create a permutation array for the cells. Each value in the array refers
8 // to a cell in the original cell set. This particular array selects every
9 // 10th cell.

10 vtkm::cont::ArrayHandleCounting<vtkm::Id> permutationArray(0, 10, 2560);
11

12 // Create a permutation of that cell set containing only every 10th cell.
13 vtkm::cont::CellSetPermutation<vtkm::cont::CellSetStructured<3>,
14 vtkm::cont::ArrayHandleCounting<vtkm::Id>>
15 permutedCellSet(permutationArray, originalCellSet);

7.2.4 Cell Set Extrude

class CellSetExtrude : public vtkm::cont::CellSet
Defines a 3-dimensional extruded mesh representation.

CellSetExtrude takes takes a mesh defined in the XZ-plane and extrudes it along the Y-axis. This plane is
repeated in a series of steps and forms wedge cells between them.

The extrusion can be linear or rotational (e.g., to form a torus).

Public Functions

virtual vtkm::Id GetNumberOfCells() const override
Get the number of cells in the topology.

virtual vtkm::Id GetNumberOfPoints() const override
Get the number of points in the topology.

virtual vtkm::UInt8 GetCellShape(vtkm::Id id) const override
Get the shell shape of a particular cell.

7.2. Cell Sets 67

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

virtual vtkm::IdComponent GetNumberOfPointsInCell(vtkm::Id id) const override
Get the number of points incident to a particular cell.

virtual void GetCellPointIds(vtkm::Id id, vtkm::Id *ptids) const override
Get a list of points incident to a particular cell.

virtual std::shared_ptr<CellSet> NewInstance() const override
Return a new CellSet that is the same derived class.

virtual void DeepCopy(const CellSet *src) override
Copy the provided CellSet into this object.

The provided CellSet must be the same type as this one.

virtual void PrintSummary(std::ostream &out) const override
Print a summary of this cell set.

virtual void ReleaseResourcesExecution() override
Remove the CellSet from any devices.

Any memory used on a device to store this object will be deleted. However, the data will still remain on
the host.

Figure 7: An example of an extruded wedge from XZ-plane coordinates. Six wedges are extracted from three XZ-plane
points.

The extruded mesh is advantageous because it is represented on-the-fly as required, so no additional memory is required.
In contrast other forms of cell sets, such as vtkm::cont::CellSetExplicit, need to be explicitly constructed by
replicating the vertices and cells. Figure 7 shows an example of six wedges extruded from three 2-dimensional coordi-
nates.

68 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

7.2.5 Unknown Cell Sets

Each of the aforementioned cell set types are represented by a different class. A vtkm::cont::DataSet object must
hold one of these cell set objects that represent the cell structure. The actual object used is not determined until run
time.

The vtkm::cont::DataSet object manages the cell set object with vtkm::cont::UnknownCellSet. When you
call vtkm::cont::DataSet::GetCellSet(), it returns a vtkm::cont::UnknownCellSet.

The vtkm::cont::UnknownCellSet object provides mechanisms to query the cell set, identify its type, and cast
it to one of the concrete CellSet types. See Chapter ref{chap:UnknownCellSet} for details on working with
vtkm::cont::UnknownCellSet.

7.3 Fields

A field on a data set provides a value on every point in space on the mesh. Fields are often used to describe physical
properties such as pressure, temperature, mass, velocity, and much more. Fields are represented in a VTK-m data set
as an array where each value is associated with a particular element type of a mesh (such as points or cells). This
association of field values to mesh elements and the structure of the cell set determines how the field is interpolated
throughout the space of the mesh.

Fields are manged by the vtkm::cont::Field class.

class Field
A Field encapsulates an array on some piece of the mesh, such as the points, a cell set, a point logical dimension,
or the whole mesh.

Subclassed by vtkm::cont::CoordinateSystem

Fields are identified by a simple name string.

inline const std::string &vtkm::cont::Field::GetName() const

The vtkm::cont::Field object internally holds a reference to an array in a type-agnostic way. Filters and other
VTK-m units will determine the type of the array and pull it out of the vtkm::cont::Field .

const vtkm::cont::UnknownArrayHandle &vtkm::cont::Field::GetData() const

The field data is associated with a particular type of element of a mesh such as points, cells, or the whole mesh.

inline Association vtkm::cont::Field::GetAssociation() const

Associations are identified by the vtkm::cont::Field::Association enumeration.

enum class vtkm::cont::Field::Association
Identifies what elements of a data set a field is associated with.

The Association enum is used by vtkm::cont::Field to specify on what topological elements each item in
the field is associated with.

Values:

enumerator Any
Any field regardless of the association.

This is used when choosing a vtkm::cont::Field that could be of any association. It is often used as
the default if no association is given.

7.3. Fields 69

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator WholeDataSet
A “global” field that applies to the entirety of a vtkm::cont::DataSet.

Fields of this association often contain summary or annotation information. An example of a whole data
set field could be the region that the mesh covers.

enumerator Points
A field that applies to points.

There is a separate field value attached to each point. Point fields usually represent samples of continuous
data that can be reinterpolated through cells. Physical properties such as temperature, pressure, density,
velocity, etc. are usually best represented in point fields. Data that deals with the points of the topology,
such as displacement vectors, are also appropriate for point data.

enumerator Cells
A field that applies to cells.

There is a separate field value attached to each cell in a cell set. Cell fields usually represent values from
an integration over the finite cells of the mesh. Integrated values like mass or volume are best represented
in cell fields. Statistics about each cell like strain or cell quality are also appropriate for cell data.

enumerator Partitions
A field that applies to partitions.

This type of field is attached to a vtkm::cont::PartitionedDataSet. There is a separate field value at-
tached to each partition. Identification or information about the arrangement of partitions such as hierarchy
levels are usually best represented in partition fields.

enumerator Global
A field that applies to all partitions.

This type of field is attached to a vtkm::cont::PartitionedDataSet. It contains values that are
“global” across all partitions and data therin.

The vtkm::cont::Field class also has several convenience methods for querying the association.

inline bool vtkm::cont::Field::IsPointField() const

inline bool vtkm::cont::Field::IsCellField() const

inline bool vtkm::cont::Field::IsWholeDataSetField() const

inline bool vtkm::cont::Field::IsPartitionsField() const

inline bool vtkm::cont::Field::IsGlobalField() const

vtkm::cont::Field has a convenience method named vtkm::cont::Field::GetRange() that finds the range of
values stored in the field array.

const vtkm::cont::ArrayHandle<vtkm::Range> &vtkm::cont::Field::GetRange() const
Returns the range of each component in the field array.

The ranges of each component are returned in an ArrayHandle containing vtkm::Range values. So, for exam-
ple, calling GetRange on a scalar field will return an ArrayHandle with exactly 1 entry in it. Calling GetRange
on a field of 3D vectors will return an ArrayHandle with exactly 3 entries corresponding to each of the compo-
nents in the range.

70 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Details on how to get data from a vtkm::cont::ArrayHandle them is given in Chapter
ref{chap:AccessingAllocatingArrays}.

7.4 Coordinate Systems

A coordinate system determines the location of a mesh’s elements in space. The spatial location is described by provid-
ing a 3D vector at each point that gives the coordinates there. The point coordinates can then be interpolated throughout
the mesh.

class CoordinateSystem : public vtkm::cont::Field
Manages a coordinate system for a DataSet.

A coordinate system is really a field with a special meaning, so CoordinateSystem class inherits from the
Field class. CoordinateSystem constrains the field to be associated with points and typically has 3D floating
point vectors for values.

In addition to all the methods provided by the vtkm::cont::Field superclass, the
vtkm::cont::CoordinateSystem also provides a vtkm::cont::CoordinateSystem::GetBounds() con-
venience method that returns a vtkm::Bounds object giving the spatial bounds of the coordinate system.

inline vtkm::Bounds vtkm::cont::CoordinateSystem::GetBounds() const

It is typical for a vtkm::cont::DataSet to have one coordinate system defined, but it is possible to define multiple
coordinate systems. This is helpful when there are multiple ways to express coordinates. For example, positions in
geographic may be expressed as Cartesian coordinates or as latitude-longitude coordinates. Both are valid and useful
in different ways.

It is also valid to have a vtkm::cont::DataSet with no coordinate system. This is useful when the structure is not
rooted in physical space. For example, if the cell set is representing a graph structure, there might not be any physical
space that has meaning for the graph.

7.5 Partitioned Data Sets

class PartitionedDataSet
Comprises a set of vtkm::cont::DataSet objects.

Iterators

PartitionedDataSet provides an iterator interface that allows you to iterate over the contained partitions using
the for (auto ds : pds) syntax.

7.4. Coordinate Systems 71

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

PartitionedDataSet(const vtkm::cont::DataSet &ds)
Create a new PartitionedDataSet containng a single DataSet ds.

explicit PartitionedDataSet(const std::vector<vtkm::cont::DataSet> &partitions)
Create a new PartitionedDataSet with a DataSet vector partitions.

explicit PartitionedDataSet(vtkm::Id size)
Create a new PartitionedDataSet with the capacity set to be size.

vtkm::cont::Field GetFieldFromPartition(const std::string &field_name, int partition_index) const
Get the field field_name from partition partition_index.

vtkm::Id GetNumberOfPartitions() const
Get number of DataSet objects stored in this PartitionedDataSet.

vtkm::Id GetGlobalNumberOfPartitions() const
Get number of partations across all MPI ranks.

Warning: This method requires global communication (MPI_Allreduce) if MPI is enabled.

const vtkm::cont::DataSet &GetPartition(vtkm::Id partId) const
Get the DataSet partId.

const std::vector<vtkm::cont::DataSet> &GetPartitions() const
Get an STL vector of all DataSet objects stored in PartitionedDataSet.

void AppendPartition(const vtkm::cont::DataSet &ds)
Add DataSet ds to the end of the list of partitions.

void InsertPartition(vtkm::Id index, const vtkm::cont::DataSet &ds)
Add DataSet ds to position index of the contained DataSet vector.

All partitions at or after this location are pushed back.

void ReplacePartition(vtkm::Id index, const vtkm::cont::DataSet &ds)
Replace the index positioned element of the contained DataSet vector with ds.

void AppendPartitions(const std::vector<vtkm::cont::DataSet> &partitions)
Append the DataSet vector partitions to the end of list of partitions.

This list can be provided as a std::vector, or it can be an initializer list (declared in { } curly braces).

inline vtkm::IdComponent GetNumberOfFields() const
Methods to Add and Get fields on a PartitionedDataSet.

inline void AddField(const Field &field)
Adds a field that is applied to the meta-partition structure.

The field must have a partition that applies across all partitions.

template<typename T, typename Storage>
inline void AddGlobalField(const std::string &fieldName, const vtkm::cont::ArrayHandle<T , Storage>

&field)
Add a field with a global association.

template<typename T, typename Storage>

72 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void AddPartitionsField(const std::string &fieldName, const vtkm::cont::ArrayHandle<T , Storage>
&field)

Add a field where each entry is associated with a whole partition.

inline vtkm::cont::Field &GetField(const std::string &name, vtkm::cont::Field::Association assoc =
vtkm::cont::Field::Association::Any)

Get a field associated with the partitioned data structure.

The field is selected by name and, optionally, the association.

inline const vtkm::cont::Field &GetGlobalField(const std::string &name) const
Get a global field.

inline const vtkm::cont::Field &GetPartitionsField(const std::string &name) const
Get a field associated with the partitions.

inline bool HasField(const std::string &name, vtkm::cont::Field::Association assoc =
vtkm::cont::Field::Association::Any) const

Query whether the partitioned data set has the named field.

inline bool HasGlobalField(const std::string &name) const
Query whether the partitioned data set has the named global field.

inline bool HasPartitionsField(const std::string &name) const
Query whether the partitioned data set has the named partition field.

void CopyPartitions(const vtkm::cont::PartitionedDataSet &source)
Copies the partitions from the source. The fields on the PartitionedDataSet are not copied.

The following example creates a vtkm::cont::PartitionedDataSet containing two uniform grid data sets.

Example 8: Creating a vtkm::cont::PartitionedDataSet.

1 // Create two uniform data sets
2 vtkm::cont::DataSetBuilderUniform dataSetBuilder;
3

4 vtkm::cont::DataSet dataSet1 = dataSetBuilder.Create(vtkm::Id3(10, 10, 10));
5 vtkm::cont::DataSet dataSet2 = dataSetBuilder.Create(vtkm::Id3(30, 30, 30));
6

7 // Add the datasets to a multi block
8 vtkm::cont::PartitionedDataSet partitionedData;
9 partitionedData.AppendPartitions({ dataSet1, dataSet2 });

It is always possible to retrieve the independent blocks in a vtkm::cont::PartitionedDataSet, from which you
can iterate and get information about the data. However, VTK-m provides several helper functions to collect metadata
information about the collection as a whole.

vtkm::Bounds vtkm::cont::BoundsCompute(const vtkm::cont::DataSet &dataset, vtkm::Id
coordinate_system_index = 0)

Functions to compute bounds for a single dataSset or partition dataset.

These are utility functions that compute bounds for a single dataset or partitioned dataset. When VTK-m is
operating in an distributed environment, these are bounds on the local process. To get global bounds across all
ranks, use vtkm::cont::BoundsGlobalCompute instead.

Note that if the provided CoordinateSystem does not exists, empty bounds are returned. Likewise, for Parti-
tionedDataSet, partitions without the chosen CoordinateSystem are skipped.

7.5. Partitioned Data Sets 73

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::Bounds vtkm::cont::BoundsCompute(const vtkm::cont::PartitionedDataSet &pds, vtkm::Id
coordinate_system_index = 0)

vtkm::Bounds vtkm::cont::BoundsCompute(const vtkm::cont::DataSet &dataset, const std::string
&coordinate_system_name)

vtkm::Bounds vtkm::cont::BoundsCompute(const vtkm::cont::PartitionedDataSet &pds, const std::string
&coordinate_system_name)

vtkm::Bounds vtkm::cont::BoundsGlobalCompute(const vtkm::cont::DataSet &dataset, vtkm::Id
coordinate_system_index = 0)

Functions to compute bounds for a single dataset or partitioned dataset globally.

These are utility functions that compute bounds for a single dataset or partitioned dataset globally i.e. across all
ranks when operating in a distributed environment. When VTK-m not operating in an distributed environment,
these behave same as vtkm::cont::BoundsCompute.

Note that if the provided CoordinateSystem does not exists, empty bounds are returned. Likewise, for Parti-
tionedDataSet, partitions without the chosen CoordinateSystem are skipped.

vtkm::Bounds vtkm::cont::BoundsGlobalCompute(const vtkm::cont::PartitionedDataSet &pds, vtkm::Id
coordinate_system_index = 0)

vtkm::Bounds vtkm::cont::BoundsGlobalCompute(const vtkm::cont::DataSet &dataset, const std::string
&coordinate_system_name)

vtkm::Bounds vtkm::cont::BoundsGlobalCompute(const vtkm::cont::PartitionedDataSet &pds, const std::string
&coordinate_system_name)

vtkm::cont::ArrayHandle<vtkm::Range> vtkm::cont::FieldRangeCompute(const vtkm::cont::DataSet &dataset,
const std::string &name,
vtkm::cont::Field::Association
assoc =
vtkm::cont::Field::Association::Any)

Compute ranges for fields in a DataSet or PartitionedDataSet.

These methods to compute ranges for fields in a single dataset or a partitioned dataset. When using VTK-m in
a hybrid-parallel environment with distributed processing, this class uses ranges for locally available data alone.
Use FieldRangeGlobalCompute to compute ranges globally across all ranks even in distributed mode. Returns
the range for a field from a dataset. If the field is not present, an empty ArrayHandle will be returned.

vtkm::cont::ArrayHandle<vtkm::Range> vtkm::cont::FieldRangeCompute(const
vtkm::cont::PartitionedDataSet
&pds, const std::string &name,
vtkm::cont::Field::Association
assoc =
vtkm::cont::Field::Association::Any)

Returns the range for a field from a PartitionedDataSet.

If the field is not present on any of the partitions, an empty ArrayHandle will be returned. If the field is present
on some partitions, but not all, those partitions without the field are skipped.

The returned array handle will have as many values as the maximum number of components for the selected field
across all partitions.

74 Chapter 7. Data Sets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::ArrayHandle<vtkm::Range> vtkm::cont::FieldRangeGlobalCompute(const vtkm::cont::DataSet
&dataset, const std::string
&name,
vtkm::cont::Field::Association
assoc =
vtkm::cont::Field::Association::Any)

utility functions to compute global ranges for dataset fields.

These functions compute global ranges for fields in a single DataSet or a PartitionedDataSet. In non-distributed
environments, this is exactly same as FieldRangeCompute. In distributed environments, however, the range is
computed locally on each rank and then a reduce-all collective is performed to reduces the ranges on all ranks.
Returns the range for a field from a dataset. If the field is not present, an empty ArrayHandle will be returned.

vtkm::cont::ArrayHandle<vtkm::Range> vtkm::cont::FieldRangeGlobalCompute(const
vtkm::cont::PartitionedDataSet
&pds, const std::string
&name,
vtkm::cont::Field::Association
assoc =
vtkm::cont::Field::Association::Any)

Returns the range for a field from a PartitionedDataSet.

If the field is not present on any of the partitions, an empty ArrayHandle will be returned. If the field is present
on some partitions, but not all, those partitions without the field are skipped.

The returned array handle will have as many values as the maximum number of components for the selected field
across all partitions.

The following example illustrates a spatial bounds query and a field range query on a
vtkm::cont::PartitionedDataSet.

Example 9: Queries on a vtkm::cont::PartitionedDataSet.

1 // Get the bounds of a multi-block data set
2 vtkm::Bounds bounds = vtkm::cont::BoundsCompute(partitionedData);
3

4 // Get the overall min/max of a field named "cellvar"
5 vtkm::cont::ArrayHandle<vtkm::Range> cellvarRanges =
6 vtkm::cont::FieldRangeCompute(partitionedData, "cellvar");
7

8 // Assuming the "cellvar" field has scalar values, then cellvarRanges has one entry
9 vtkm::Range cellvarRange = cellvarRanges.ReadPortal().Get(0);

Did You Know?

The aforementioned functions for querying a vtkm::cont::PartitionedDataSet object also work on
vtkm::cont::DataSet objects. This is particularly useful with the vtkm::cont::BoundsGlobalCompute() and
vtkm::cont::FieldRangeGlobalCompute() functions to manage distributed parallel objects.

Filters can be executed on vtkm::cont::PartitionedDataSet objects in a similar way they are executed on
vtkm::cont::DataSet objects. In both cases, the vtkm::cont::Filter::Execute() method is called on the
filter giving data object as an argument.

7.5. Partitioned Data Sets 75

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 10: Applying a filter to multi block data.

1 vtkm::filter::field_conversion::CellAverage cellAverage;
2 cellAverage.SetActiveField("pointvar", vtkm::cont::Field::Association::Points);
3

4 vtkm::cont::PartitionedDataSet results = cellAverage.Execute(partitionedData);

76 Chapter 7. Data Sets

CHAPTER

EIGHT

FILE I/O

Before VTK-m can be used to process data, data need to be loaded into the system. VTK-m comes with a basic file I/O
package to get started developing very quickly. All the file I/O classes are declared under the vtkm::io namespace.

Did You Know?

Files are just one of many ways to get data in and out of VTK-m. In later chapters we explore ways to define VTK-m
data structures of increasing power and complexity. In particular, Section 7.1 (Building Data Sets) describes how to
build VTK-m data set objects and Section ref{sec:ArrayHandle:Adapting} documents how to adapt data structures
defined in other libraries to be used directly in VTK-m.

8.1 Readers

All reader classes provided by VTK-m are located in the vtkm::io namespace. The general interface for each reader
class is to accept a filename in the constructor and to provide a ReadDataSet method to load the data from disk.

The data in the file are returned in a vtkm::cont::DataSet object as described in Chapter 7 (Data Sets), but it is
sufficient to know that a DataSet can be passed among readers, writers, filters, and rendering units.

8.1.1 Legacy VTK File Reader

Legacy VTK files are a simple open format for storing visualization data. These files typically have a .vtk extension.
Legacy VTK files are popular because they are simple to create and read and are consequently supported by a large
number of tools. The format of legacy VTK files is well documented in The VTK User’s Guide [as well as online](https:
//examples.vtk.org/site/VTKFileFormats/). Legacy VTK files can also be read and written with tools like ParaView
and VisIt.

Legacy VTK files can be read using the vtkm::io::VTKDataSetReader class.

class VTKDataSetReader : public vtkm::io::VTKDataSetReaderBase
Reads a legacy VTK file.

By convention, legacy VTK files have a .vtk extension. This class should be constructed with a filename, and
the data read with ReadDataSet.

77

https://examples.vtk.org/site/VTKFileFormats/
https://examples.vtk.org/site/VTKFileFormats/

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

VTKDataSetReader(const std::string &fileName)
Construct a reader to load data from the given file.

Example 1: Reading a legacy VTK file.

1 #include <vtkm/io/VTKDataSetReader.h>
2

3 vtkm::cont::DataSet OpenDataFromVTKFile()
4 {
5 vtkm::io::VTKDataSetReader reader("data.vtk");
6

7 return reader.ReadDataSet();
8 }

8.1.2 Image Readers

VTK-m provides classes to read images from some standard image formats. These readers will store the data in a
vtkm::cont::DataSet object with the colors stored as a named point field. The colors are read as 4-component
RGBA vectors for each pixel. Each component in the pixel color is stored as a 32-bit float between 0 and 1.

Portable Network Graphics (PNG) files can be read using the vtkm::io::ImageReaderPNG class.

class ImageReaderPNG : public vtkm::io::ImageReaderBase
Reads images using the PNG format.

ImageReaderPNG is constructed with the name of the file to read. The data from the file is read by calling the
ReadDataSet method.

ImageReaderPNG will automatically upsample/downsample read image data to a 16 bit RGB no matter how the
image is compressed. It is up to the user to decide the pixel format for input PNGs

By default, the colors are stored in a field named “colors”, but the name of the field can optionally be changed
using the SetPointFieldName method.

Example 2: Reading an image from a PNG file.

1 #include <vtkm/io/ImageReaderPNG.h>
2

3 vtkm::cont::DataSet OpenDataFromPNG()
4 {
5 vtkm::io::ImageReaderPNG imageReader("data.png");
6 imageReader.SetPointFieldName("pixel_colors");
7 return imageReader.ReadDataSet();
8 }

Portable anymap (PNM) files can be read using the vtkm::io::ImageReaderPNM class.

class ImageReaderPNM : public vtkm::io::ImageReaderBase
Reads images using the PNM format.

ImageReaderPNM is constructed with the name of the file to read. The data from the file is read by calling the
ReadDataSet method.

78 Chapter 8. File I/O

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Currently, ImageReaderPNM only supports files using the portable pixmap (PPM) format (with magic number
`P6’). These files are most commonly stored with a .ppm extension although the .pnm extension is also valid.
More details on the PNM format can be found here at http://netpbm.sourceforge.net/doc/ppm.html

By default, the colors are stored in a field named “colors”, but the name of the field can optionally be changed
using the SetPointFieldName method.

Like for PNG files, a vtkm::io::ImageReaderPNM is constructed with the name of the file to read from.

Example 3: Reading an image from a PNM file.

1 #include <vtkm/io/ImageReaderPNM.h>
2

3 vtkm::cont::DataSet OpenDataFromPNM()
4 {
5 vtkm::io::ImageReaderPNM imageReader("data.ppm");
6 imageReader.SetPointFieldName("pixels");
7 return imageReader.ReadDataSet();
8 }

8.2 Writers

All writer classes provided by VTK-m are located in the vtkm::io namespace. The general interface for each writer
class is to accept a filename in the constructor and to provide a WriteDataSet method to save data to the disk. The
WriteDataSetmethod takes a vtkm::cont::DataSet object as an argument, which contains the data to write to the
file.

8.2.1 Legacy VTK File Writer

Legacy VTK files can be written using the vtkm::io::VTKDataSetWriter class.

class VTKDataSetWriter
Reads a legacy VTK file.

By convention, legacy VTK files have a .vtk extension. This class should be constructed with a filename, and
the data read with ReadDataSet.

Public Functions

VTKDataSetWriter(const std::string &fileName)
Construct a writer to save data to the given file.

void WriteDataSet(const vtkm::cont::DataSet &dataSet) const
Write data from the given DataSet object to the file specified in the constructor.

vtkm::io::FileType GetFileType() const
Get whether the file will be written in ASCII or binary format.

void SetFileType(vtkm::io::FileType type)
Set whether the file will be written in ASCII or binary format.

8.2. Writers 79

http://netpbm.sourceforge.net/doc/ppm.html

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetFileTypeToAscii()
Set whether the file will be written in ASCII or binary format.

inline void SetFileTypeToBinary()
Set whether the file will be written in ASCII or binary format.

enum class vtkm::io::FileType
Values:

enumerator ASCII

enumerator BINARY

Example 4: Writing a legacy VTK file.

1 #include <vtkm/io/VTKDataSetWriter.h>
2

3 void SaveDataAsVTKFile(vtkm::cont::DataSet data)
4 {
5 vtkm::io::VTKDataSetWriter writer("data.vtk");
6

7 writer.WriteDataSet(data);
8 }

8.2.2 Image Writers

VTK-m provides classes to some standard image formats. These writers store data in a vtkm::cont::DataSet.
The data must be a 2D structure with the colors stored in a point field. (See Chapter 7 (Data Sets) for details on
vtkm::cont::DataSet objects.)

Portable Network Graphics (PNG) files can be written using the vtkm::io::ImageWriterPNG class.

class ImageWriterPNG : public vtkm::io::ImageWriterBase
Writes images using the PNG format.

ImageWriterPNG is constructed with the name of the file to write. The data is written to the file by calling the
WriteDataSet method.

When writing files, ImageReaderPNG automatically compresses data to optimal sizes relative to the actual bit
complexity of the provided image.

By default, PNG files are written as RGBA colors using 8-bits for each component. You can change the for-
mat written using the vtkm::io::ImageWriterPNG::SetPixelDepth() method. This takes an item in the
vtkm::io::ImageWriterPNG::PixelDepth enumeration.

enum class vtkm::io::ImageWriterBase::PixelDepth
Values:

enumerator PIXEL_8

enumerator PIXEL_16

80 Chapter 8. File I/O

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 5: Writing an image to a PNG file.

1 #include <vtkm/io/ImageWriterPNG.h>
2

3 void WriteToPNG(const vtkm::cont::DataSet& dataSet)
4 {
5 vtkm::io::ImageWriterPNG imageWriter("data.png");
6 imageWriter.SetPixelDepth(vtkm::io::ImageWriterPNG::PixelDepth::PIXEL_16);
7 imageWriter.WriteDataSet(dataSet);
8 }

Portable anymap (PNM) files can be written using the vtkm::io::ImageWriterPNM class.

class ImageWriterPNM : public vtkm::io::ImageWriterBase
Writes images using the PNM format.

ImageWriterPNM is constructed with the name of the file to write. The data is written to the file by calling the
WriteDataSet method.

ImageWriterPNM writes images in PNM format (for magic number P6). These files are most commonly stored
with a .ppm extension although the .pnm extension is also valid. More details on the PNM format can be found
at http://netpbm.sourceforge.net/doc/ppm.html

Public Functions

virtual void Write(vtkm::Id width, vtkm::Id height, const ColorArrayType &pixels) override
Attempts to write the ImageDataSet to a PNM file.

The MaxColorValue set in the file with either be selected from the stored MaxColorValue member variable,
or from the templated type if MaxColorValue hasn’t been set from a read file.

Example 6: Writing an image to a PNM file.

1 #include <vtkm/io/ImageWriterPNM.h>
2

3 void WriteToPNM(const vtkm::cont::DataSet& dataSet)
4 {
5 vtkm::io::ImageWriterPNM imageWriter("data.ppm");
6 imageWriter.SetPixelDepth(vtkm::io::ImageWriterPNM::PixelDepth::PIXEL_16);
7 imageWriter.WriteDataSet(dataSet);
8 }

8.2. Writers 81

http://netpbm.sourceforge.net/doc/ppm.html

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

82 Chapter 8. File I/O

CHAPTER

NINE

RUNNING FILTERS

Filters are functional units that take data as input and write new data as output. Filters operate on
vtkm::cont::DataSet objects, which are described in Chapter 7 (Data Sets).

Did You Know?

The structure of filters in VTK-m is significantly simpler than their counterparts in VTK. VTK filters are arranged in
a dataflow network (a.k.a. a visualization pipeline) and execution management is handled automatically. In contrast,
VTK-m filters are simple imperative units, which are simply called with input data and return output data.

VTK-m comes with several filters ready for use. This chapter gives an overview of how to run the filters. Chapter 10
(Provided Filters) describes the common filters provided by VTK-m. Later, Part III (Developing Algorithms) describes
the necessary steps in creating new filters in VTK-m.

9.1 Basic Filter Operation

Different filters will be used in different ways, but the basic operation of all filters is to instantiate the filter class, set
the state parameters on the filter object, and then call the filter’s vtkm::filter::Filter::Execute() method. It
takes a vtkm::cont::DataSet and returns a new vtkm::cont::DataSet, which contains the modified data.

vtkm::cont::DataSet vtkm::filter::Filter::Execute(const vtkm::cont::DataSet &input)
Executes the filter on the input and produces a result dataset.

On success, this the dataset produced. On error, vtkm::cont::ErrorExecution will be thrown.

The vtkm::filter::Filter::Execute() method can alternately take a vtkm::cont::PartitionedDataSet
object, which is a composite of vtkm::cont::DataSet objects. In this case vtkm::filter::Filter::Execute()
will return another vtkm::cont::PartitionedDataSet object.

vtkm::cont::PartitionedDataSet vtkm::filter::Filter::Execute(const vtkm::cont::PartitionedDataSet
&input)

Executes the filter on the input PartitionedDataSet and produces a result PartitionedDataSet.

On success, this the dataset produced. On error, vtkm::cont::ErrorExecution will be thrown.

The following example provides a simple demonstration of using a filter. It specifically uses the point elevation filter
to estimate the air pressure at each point based on its elevation.

83

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 1: Using vtkm::filter::field_transform::PointElevation
to estiate air pressure.

1 VTKM_CONT
2 vtkm::cont::DataSet ComputeAirPressure(vtkm::cont::DataSet dataSet)
3 {
4 vtkm::filter::field_transform::PointElevation elevationFilter;
5

6 // Use the elevation filter to estimate atmospheric pressure based on the
7 // height of the point coordinates. Atmospheric pressure is 101325 Pa at
8 // sea level and drops about 12 Pa per meter.
9 elevationFilter.SetLowPoint(0.0, 0.0, 0.0);

10 elevationFilter.SetHighPoint(0.0, 0.0, 2000.0);
11 elevationFilter.SetRange(101325.0, 77325.0);
12

13 elevationFilter.SetUseCoordinateSystemAsField(true);
14

15 elevationFilter.SetOutputFieldName("pressure");
16

17 vtkm::cont::DataSet result = elevationFilter.Execute(dataSet);
18

19 return result;
20 }

We see that this example follows the previously described procedure of constructing the filter (line 4), setting the state
parameters (lines 9 – 15), and finally executing the filter on a vtkm::cont::DataSet (line 17).

Every vtkm::cont::DataSet object contains a list of fields, which describe some numerical value associated with
different parts of the data set in space. Fields often represent physical properties such as temperature, pressure, or
velocity. Fields are identified with string names. There are also special fields called coordinate systems that describe
the location of points in space. Field are mentioned here because they are often used as input data to the filter’s operation
and filters often generate new fields in the output. This is the case in Example 1. In line 13 the coordinate system is set
as the input field and in line 15 the name to use for the generated output field is selected.

9.2 Advanced Field Management

Most filters work with fields as inputs and outputs to their algorithms. Although in the previous discussions of the
filters we have seen examples of specifying fields, these examples have been kept brief in the interest of clarity. In this
section we revisit how filters manage fields and provide more detailed documentation of the controls.

Note that not all of the discussion in this section applies to all the filters provided by VTK-m. For example, not all
filters have a specified input field. But where possible, the interface to the filter objects is kept consistent.

84 Chapter 9. Running Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

9.2.1 Input Fields

Filters that take one or more fields as input have a common set of methods to set the “active” fields to operate on. They
might also have custom methods to ease setting the appropriate fields, but these are the base methods.

inline void vtkm::filter::Filter::SetActiveField(const std::string &name, vtkm::cont::Field::Association
association = vtkm::cont::Field::Association::Any)

Specifies a field to operate on.

The number of input fields (or whether the filter operates on input fields at all) is specific to each particular filter.

inline void vtkm::filter::Filter::SetActiveField(vtkm::IdComponent index, const std::string &name,
vtkm::cont::Field::Association association =
vtkm::cont::Field::Association::Any)

Specifies a field to operate on.

The number of input fields (or whether the filter operates on input fields at all) is specific to each particular filter.

inline const std::string &vtkm::filter::Filter::GetActiveFieldName(vtkm::IdComponent index = 0) const
Specifies a field to operate on.

The number of input fields (or whether the filter operates on input fields at all) is specific to each particular filter.

inline vtkm::cont::Field::Association vtkm::filter::Filter::GetActiveFieldAssociation(vtkm::IdComponent
index = 0) const

Specifies a field to operate on.

The number of input fields (or whether the filter operates on input fields at all) is specific to each particular filter.

inline void vtkm::filter::Filter::SetActiveCoordinateSystem(vtkm::Id coord_idx)
Specifies the coordinate system index to make active to use when processing the input vtkm::cont::DataSet.

This is used primarily by the Filter to select the coordinate system to use as a field when
UseCoordinateSystemAsField is true.

inline void vtkm::filter::Filter::SetActiveCoordinateSystem(vtkm::IdComponent index, vtkm::Id
coord_idx)

Specifies the coordinate system index to make active to use when processing the input vtkm::cont::DataSet.

This is used primarily by the Filter to select the coordinate system to use as a field when
UseCoordinateSystemAsField is true.

inline vtkm::Id vtkm::filter::Filter::GetActiveCoordinateSystemIndex(vtkm::IdComponent index = 0)
const

Specifies the coordinate system index to make active to use when processing the input vtkm::cont::DataSet.

This is used primarily by the Filter to select the coordinate system to use as a field when
UseCoordinateSystemAsField is true.

inline void vtkm::filter::Filter::SetUseCoordinateSystemAsField(bool val)
Specifies whether to use point coordinates as the input field.

When true, the values for the active field are ignored and the active coordinate system is used instead.

inline void vtkm::filter::Filter::SetUseCoordinateSystemAsField(vtkm::IdComponent index, bool val)
Specifies whether to use point coordinates as the input field.

When true, the values for the active field are ignored and the active coordinate system is used instead.

9.2. Advanced Field Management 85

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline bool vtkm::filter::Filter::GetUseCoordinateSystemAsField(vtkm::IdComponent index = 0) const
Specifies whether to use point coordinates as the input field.

When true, the values for the active field are ignored and the active coordinate system is used instead.

inline vtkm::IdComponent vtkm::filter::Filter::GetNumberOfActiveFields() const
Return the number of active fields currently set.

The general interface to Filter allows a user to set an arbitrary number of active fields (indexed 0 and on). This
method returns the number of active fields that are set. Note that the filter implementation is free to ignore any
active fields it does not support. Also note that an active field can be set to be either a named field or a coordinate
system.

The vtkm::filter::Filter::SetActiveField() method takes an optional argument that specifies which topo-
logical elements the field is associated with (such as points or cells). The vtkm::cont::Field::Association
enumeration is used to select the field association.

Example 2: Setting a field’s active filter with an association.

1 filter.SetActiveField("pointvar", vtkm::cont::Field::Association::Points);

Common Errors

It is possible to have two fields with the same name that are only differentiable by the association. That is, you could
have a point field and a cell field with different data but the same name. Thus, it is best practice to specify the field
association when possible. Likewise, it is poor practice to have two fields with the same name, particularly if the data
are not equivalent in some way. It is often the case that fields are selected without an association.

It is also possible to set the active scalar field as a coordinate system of the data. A coordinate system essentially
provides the spatial location of the points of the data and they have a special place in the vtkm::cont::DataSet
structure. (See Section 7.4 (Coordinate Systems) for details on coordinate systems.) You can use a coordinate system
as the active scalars by calling the vtkm::filter::Filter::SetUseCoordinateSystemAsField()method with a
true flag. Since a vtkm::cont::DataSet can have multiple coordinate systems, you can select the desired coordinate
system with vtkm::filter::Filter::SetActiveCoordinateSystem(). (By default, the first coordinate system,
index 0, will be used.)

Example 3: Setting the active coordinate system.

1 filter.SetUseCoordinateSystemAsField(true);
2 filter.SetActiveCoordinateSystem(1);

9.2.2 Passing Fields from Input to Output

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depend-
ing on what operation the filter does, this could be a simple shallow copy of an array, or it could be a com-
puted operation. By default, the filter will automatically pass all fields from input to output (performing whatever
transformations are necessary). You can control which fields are passed (and equivalently which are not) with the
vtkm::filter::Filter::SetFieldsToPass() methods.

void vtkm::filter::Filter::SetFieldsToPass(vtkm::filter::FieldSelection &&fieldsToPass)
Specify which fields get passed from input to output.

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. You can control which fields are passed (and equivalently which are not) with this parameter.

86 Chapter 9. Running Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

By default, all fields are passed during execution.

inline const vtkm::filter::FieldSelection &vtkm::filter::Filter::GetFieldsToPass() const
Specify which fields get passed from input to output.

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. You can control which fields are passed (and equivalently which are not) with this parameter.

By default, all fields are passed during execution.

inline vtkm::filter::FieldSelection &vtkm::filter::Filter::GetFieldsToPass()
Specify which fields get passed from input to output.

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. You can control which fields are passed (and equivalently which are not) with this parameter.

By default, all fields are passed during execution.

There are multiple ways to to use vtkm::filter::Filter::SetFieldsToPass() to control what fields are passed.
If you want to turn off all fields so that none are passed, call vtkm::filter::Filter::SetFieldsToPass() with
vtkm::filter::FieldSelection::Mode::None.

Example 4: Turning off the passing of all fields when executing a filter.

1 filter.SetFieldsToPass(vtkm::filter::FieldSelection::Mode::None);

If you want to pass one specific field, you can pass that field’s name to
vtkm::filter::Filter::SetFieldsToPass().

inline void vtkm::filter::Filter::SetFieldsToPass(const std::string &fieldname,
vtkm::filter::FieldSelection::Mode mode)

Specify which fields get passed from input to output.

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. You can control which fields are passed (and equivalently which are not) with this parameter.

By default, all fields are passed during execution.

void vtkm::filter::Filter::SetFieldsToPass(const std::string &fieldname, vtkm::cont::Field::Association
association, vtkm::filter::FieldSelection::Mode mode =
vtkm::filter::FieldSelection::Mode::Select)

Specify which fields get passed from input to output.

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. You can control which fields are passed (and equivalently which are not) with this parameter.

By default, all fields are passed during execution.

Example 5: Setting one field to pass by name.

1 filter.SetFieldsToPass("pointvar");

Or you can provide a list of fields to pass by giving vtkm::filter::Filter::SetFieldsToPass() an initializer
list of names.

9.2. Advanced Field Management 87

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

void vtkm::filter::Filter::SetFieldsToPass(std::initializer_list<std::string> fields,
vtkm::filter::FieldSelection::Mode mode =
vtkm::filter::FieldSelection::Mode::Select)

Specify which fields get passed from input to output.

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. You can control which fields are passed (and equivalently which are not) with this parameter.

By default, all fields are passed during execution.

Example 6: Using a list of fields for a filter to pass.

1 filter.SetFieldsToPass({ "pointvar", "cellvar" });

If you want to instead select a list of fields to not pass, you can add
vtkm::filter::FieldSelection::Mode::Exclude as an argument to vtkm::filter::Filter::SetFieldsToPass().

Example 7: Excluding a list of fields for a filter to pass.

1 filter.SetFieldsToPass({ "pointvar", "cellvar" },
2 vtkm::filter::FieldSelection::Mode::Exclude);

Ultimately, vtkm::filter::Filter::SetFieldsToPass() takes a vtkm::filter::FieldSelection object.
You can create one directly to select (or exclude) specific fields and their associations.

class FieldSelection
A FieldSelection stores information about fields to map for input dataset to output when a filter is executed.

A FieldSelection object is passed to vtkm::filter::Filter::Execute to execute the filter and map
selected fields. It is possible to easily construct FieldSelection that selects all or none of the input fields.

Unnamed Group

inline void AddField(const vtkm::cont::Field &inputField)
Add fields to select or exclude. If no mode is specified, then the mode will follow that of GetMode().

inline void AddField(const vtkm::cont::Field &inputField, Mode mode)
Add fields to select or exclude. If no mode is specified, then the mode will follow that of GetMode().

inline void AddField(const std::string &fieldName, vtkm::cont::Field::Association association =
vtkm::cont::Field::Association::Any)

Add fields to select or exclude. If no mode is specified, then the mode will follow that of GetMode().

inline void AddField(const std::string &fieldName, Mode mode)
Add fields to select or exclude. If no mode is specified, then the mode will follow that of GetMode().

void AddField(const std::string &fieldName, vtkm::cont::Field::Association association, Mode mode)
Add fields to select or exclude. If no mode is specified, then the mode will follow that of GetMode().

88 Chapter 9. Running Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Unnamed Group

inline Mode GetFieldMode(const vtkm::cont::Field &inputField) const
Returns the mode for a particular field. If the field as been added with AddField (or another means), then
this will return Select or Exclude. If the field has not been added, None will be returned.

Mode GetFieldMode(const std::string &fieldName, vtkm::cont::Field::Association association =
vtkm::cont::Field::Association::Any) const

Returns the mode for a particular field. If the field as been added with AddField (or another means), then
this will return Select or Exclude. If the field has not been added, None will be returned.

Public Functions

FieldSelection(const std::string &field, Mode mode = Mode::Select)
Use this constructor to create a field selection given a single field name.

FieldSelection("field_name");

FieldSelection(const char *field, Mode mode = Mode::Select)
Use this constructor to create a field selection given a single field name.

FieldSelection("field_name");

FieldSelection(const std::string &field, vtkm::cont::Field::Association association, Mode mode =
Mode::Select)

Use this constructor to create a field selection given a single name and association.

FieldSelection("field_name", vtkm::cont::Field::Association::Points)

{cpp}

FieldSelection(std::initializer_list<std::string> fields, Mode mode = Mode::Select)
Use this constructor to create a field selection given the field names.

FieldSelection({"field_one", "field_two"});

FieldSelection(std::initializer_list<std::pair<std::string, vtkm::cont::Field::Association>> fields, Mode
mode = Mode::Select)

Use this constructor create a field selection given the field names and associations e.g.

using pair_type = std::pair<std::string, vtkm::cont::Field::Association>;
FieldSelection({

pair_type{"field_one", vtkm::cont::Field::Association::Points},
pair_type{"field_two", vtkm::cont::Field::Association::Cells} });

FieldSelection(std::initializer_list<vtkm::Pair<std::string, vtkm::cont::Field::Association>> fields, Mode
mode = Mode::Select)

Use this constructor create a field selection given the field names and associations e.g.

9.2. Advanced Field Management 89

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

using pair_type = vtkm::Pair<std::string, vtkm::cont::Field::Association>;
FieldSelection({

pair_type{"field_one", vtkm::cont::Field::Association::Points},
pair_type{"field_two", vtkm::cont::Field::Association::Cells} });

inline bool IsFieldSelected(const vtkm::cont::Field &inputField) const
Returns true if the input field should be mapped to the output dataset.

inline bool HasField(const vtkm::cont::Field &inputField) const
Returns true if the input field has been added to this selection.

Note that depending on the mode of this selection, the result of HasField is not necessarily the same as
IsFieldSelected. (If the mode is MODE_SELECT, then the result of the two will be the same.)

void ClearFields()
Clear all fields added using AddField.

Mode GetMode() const
Gets the mode of the field selection.

If Select mode is on, then only fields that have a Select mode are considered as selected. (All others
are considered unselected.) Calling AddField in this mode will mark it as Select. If Exclude mode is
on, then all fields are considered selected except those fields with an Excludemode. Calling AddField in
this mode will mark it as Exclude.

void SetMode(Mode val)
Sets the mode of the field selection.

If Select mode is on, then only fields that have a Select mode are considered as selected. (All others
are considered unselected.) Calling AddField in this mode will mark it as Select. If Exclude mode is
on, then all fields are considered selected except those fields with an Excludemode. Calling AddField in
this mode will mark it as Exclude.

If the mode is set to None, then the field modes are cleared and the overall mode is set to Select (meaning
none of the fields are initially selected). If the mode is set to All, then the field modes are cleared and the
overall mode is set to Exclude (meaning all of the fields are initially selected).

Example 8: Using vtkm::filter::FieldSelection to select cells to
pass.

1 vtkm::filter::FieldSelection fieldSelection;
2 fieldSelection.AddField("scalars");
3 fieldSelection.AddField("cellvar", vtkm::cont::Field::Association::Cells);
4

5 filter.SetFieldsToPass(fieldSelection);

It is also possible to specify field attributions directly to vtkm::filter::Filter::SetFieldsToPass(). If you only
have one field, you can just specify both the name and attribution. If you have multiple fields, you can provide an ini-
tializer list of std::pair or vtkm::Pair containing a std::string and a vtkm::cont::Field::Association.
In either case, you can add an optional last argument of vtkm::filter::FieldSelection::Mode::Exclude to
exclude the specified filters instead of selecting them.

void vtkm::filter::Filter::SetFieldsToPass(std::initializer_list<std::pair<std::string,
vtkm::cont::Field::Association>> fields,
vtkm::filter::FieldSelection::Mode mode =
vtkm::filter::FieldSelection::Mode::Select)

Specify which fields get passed from input to output.

90 Chapter 9. Running Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. You can control which fields are passed (and equivalently which are not) with this parameter.

By default, all fields are passed during execution.

Example 9: Selecting one field and its association for a filter to pass.

1 filter.SetFieldsToPass("pointvar", vtkm::cont::Field::Association::Points);

Example 10: Selecting a list of fields and their associations for a filter to
pass.

1 filter.SetFieldsToPass(
2 { vtkm::make_Pair("pointvar", vtkm::cont::Field::Association::Points),
3 vtkm::make_Pair("cellvar", vtkm::cont::Field::Association::Cells),
4 vtkm::make_Pair("scalars", vtkm::cont::Field::Association::Any) });

Note that coordinate systems in a vtkm::cont::DataSet are simply links to point fields, and by default filters will
pass coordinate systems regardless of the field selection flags. To prevent a filter from passing a coordinate system if
its associated field is not selected, use the vtkm::filter::Filter::SetPassCoordinateSystems() method.

inline void vtkm::filter::Filter::SetPassCoordinateSystems(bool flag)
Specify whether to always pass coordinate systems.

vtkm::cont::CoordinateSystems in a DataSet are really just point fields marked as being a coordinate
system. Thus, a coordinate system is passed if and only if the associated field is passed.

By default, the filter will pass all fields associated with a coordinate system regardless of the FieldsToPass
marks the field as passing. If this option is set to false, then coordinate systems will only be passed if it is
marked so by FieldsToPass.

inline bool vtkm::filter::Filter::GetPassCoordinateSystems() const
Specify whether to always pass coordinate systems.

vtkm::cont::CoordinateSystems in a DataSet are really just point fields marked as being a coordinate
system. Thus, a coordinate system is passed if and only if the associated field is passed.

By default, the filter will pass all fields associated with a coordinate system regardless of the FieldsToPass
marks the field as passing. If this option is set to false, then coordinate systems will only be passed if it is
marked so by FieldsToPass.

9.2. Advanced Field Management 91

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 11: Turning off the automatic selection of fields associated with
a vtkm::cont::DataSet’s coordinate system.

1 filter.SetPassCoordinateSystems(false);

9.2.3 Output Field Names

Many filters will create fields of data. A common way to set the name of the output field is to use the
vtkm::filter::Filter::SetOutputFieldName() method.

inline void vtkm::filter::Filter::SetOutputFieldName(const std::string &name)
Specifies the name of the output field generated.

Not all filters create an output field.

inline const std::string &vtkm::filter::Filter::GetOutputFieldName() const
Specifies the name of the output field generated.

Not all filters create an output field.

Most filters will have a default name to use for its generated fields. It is also common for filters to provide convenience
methods to name the output fields.

92 Chapter 9. Running Filters

CHAPTER

TEN

PROVIDED FILTERS

VTK-m comes with the implementation of many filters. Filters in VTK-m are divided into a collection of modules,
each with its own namespace and library. This section is organized by each filter module, each of which contains one
or more filters that are related to each other.

Note that this is not an exhaustive list of filters available in VTK-m. More can be found in the namespaces under
vtkm::filter (and likewise the subdirectories under vtkm/filter in the VTK-m source.

10.1 Cleaning Grids

The vtkm::filter::clean_gridmodule contains filters that resolve issues with mesh structure. This could include
finding and merging coincident points, removing degenerate cells, or converting the grid to a known type.

10.1.1 Clean Grid

vtkm::filter::clean_grid::CleanGrid is a filter that converts a cell set to an explicit representation and poten-
tially removes redundant or unused data. It does this by iterating over all cells in the data set, and for each one creating
the explicit cell representation that is stored in the output. (Explicit cell sets are described in Section 7.2.2 (Explicit
Cell Sets).) One benefit of using vtkm::filter::clean_grid::CleanGrid is that it can optionally remove unused
points and combine coincident points. Another benefit is that the resulting cell set will be of a known specific type.

Common Errors

The result of vtkm::filter::clean_grid::CleanGrid is not necessarily smaller, memory-wise, than its input.
For example, “cleaning” a data set with a structured topology will actually result in a data set that requires much more
memory to store an explicit topology.

class CleanGrid : public vtkm::filter::Filter
Clean a mesh to an unstructured grid.

This filter converts the cells of its input to an explicit representation and potentially removes redundant or unused
data. The newly constructed data set will have the same cells as the input and the topology will be stored in a
vtkm::cont::CellSetExplicit<>. The filter will also optionally remove all unused points.

Note that the result of CleanGrid is not necessarily smaller than the input. For example, “cleaning” a data set
with a vtkm::cont::CellSetStructured topology will actually result in a much larger data set.

CleanGrid can optionally merge close points. The closeness of points is determined by the coordinate
system. If there are multiple coordinate systems, the desired coordinate system can be selected with the
SetActiveCoordinateSystem() method.

93

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline bool GetCompactPointFields() const
When the CompactPointFields flag is true, the filter will identify and remove any points that are not used
by the topology.

This is on by default.

inline void SetCompactPointFields(bool flag)
When the CompactPointFields flag is true, the filter will identify and remove any points that are not used
by the topology.

This is on by default.

inline bool GetMergePoints() const
When the MergePoints flag is true, the filter will identify any coincident points and merge them together.

The distance two points can be to considered coincident is set with the tolerance flags. This is on by default.

inline void SetMergePoints(bool flag)
When the MergePoints flag is true, the filter will identify any coincident points and merge them together.

The distance two points can be to considered coincident is set with the tolerance flags. This is on by default.

inline vtkm::Float64 GetTolerance() const
Defines the tolerance used when determining whether two points are considered coincident.

Because floating point parameters have limited precision, point coordinates that are essentially the same
might not be bit-wise exactly the same. Thus, the CleanGrid filter has the ability to find and merge points
that are close but perhaps not exact. If the ToleranceIsAbsolute flag is false (the default), then this tolerance
is scaled by the diagonal of the points.

inline void SetTolerance(vtkm::Float64 tolerance)
Defines the tolerance used when determining whether two points are considered coincident.

Because floating point parameters have limited precision, point coordinates that are essentially the same
might not be bit-wise exactly the same. Thus, the CleanGrid filter has the ability to find and merge points
that are close but perhaps not exact. If the ToleranceIsAbsolute flag is false (the default), then this tolerance
is scaled by the diagonal of the points.

inline bool GetToleranceIsAbsolute() const
When ToleranceIsAbsolute is false (the default) then the tolerance is scaled by the diagonal of the bounds
of the dataset.

If true, then the tolerance is taken as the actual distance to use.

inline void SetToleranceIsAbsolute(bool flag)
When ToleranceIsAbsolute is false (the default) then the tolerance is scaled by the diagonal of the bounds
of the dataset.

If true, then the tolerance is taken as the actual distance to use.

inline bool GetRemoveDegenerateCells() const
When RemoveDegenerateCells is true (the default), then CleanGrid will look for repeated points in cells
and, if the repeated points cause the cell to drop dimensionality, the cell is removed.

This is particularly useful when point merging is on as this operation can create degenerate cells.

94 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetRemoveDegenerateCells(bool flag)
When RemoveDegenerateCells is true (the default), then CleanGrid will look for repeated points in cells
and, if the repeated points cause the cell to drop dimensionality, the cell is removed.

This is particularly useful when point merging is on as this operation can create degenerate cells.

inline bool GetFastMerge() const
When FastMerge is true (the default), some corners are cut when computing coincident points.

The point merge will go faster but the tolerance will not be strictly followed.

inline void SetFastMerge(bool flag)
When FastMerge is true (the default), some corners are cut when computing coincident points.

The point merge will go faster but the tolerance will not be strictly followed.

10.2 Connected Components

Connected components in a mesh are groups of mesh elements that are connected together in some way. For example,
if two cells are neighbors, then they are in the same component. Likewise, a cell is also in the same component as
its neighbor’s neighbors as well as their neighbors and so on. Connected components help identify when features in a
simulation fragment or meld.

The vtkm::filter::connected_components module contains filters that find groups of cells that are connected.
There are different ways to define what it means to be connected. One way is to use the topological connections of the
cells. That is, two cells that share a point, edge, or face are connected. Another way is to use a field that classifies each
cell, and cells are only connected if they have the same classification.

10.2.1 Cell Connectivity

The vtkm::filter::connected_components::CellSetConnectivity filter finds groups of cells that are con-
nected together through their topology.

class CellSetConnectivity : public vtkm::filter::Filter
Finds and labels groups of cells that are connected together through their topology.

Two cells are considered connected if they share an edge. CellSetConnectivity identifies some number of
components and assigns each component a unique integer.

The result of the filter is a cell field of type vtkm::Id with the default name of “component” (which can be
changed with the SetOutputFieldName method). Each entry in the cell field will be a number that identifies
to which component the cell belongs.

10.2.2 Classification Field on Image Data

The vtkm::filter::connected_components::ImageConnectivity filter finds groups of points that have the
same field value and are connected together through their topology.

class ImageConnectivity : public vtkm::filter::Filter

10.2. Connected Components 95

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.3 Contouring

The vtkm::filter::contour module contains filters that extract regions that match some field or spatial criteria.
Unlike entity extraction filters (Section 10.5), the geometry will be clipped or sliced to extract the exact matching
region. (In contrast, entity extraction filters will pull unmodified points, edges, faces, or cells from the input.)

10.3.1 Contour

Contouring is one of the most fundamental filters in scientific visualization. A contour is the locus where a field
is equal to a particular value. A topographic map showing curves of various elevations often used when hiking in
hilly regions is an example of contours of an elevation field in 2 dimensions. Extended to 3 dimensions, a contour
gives a surface. Thus, a contour is often called an isosurface. The contouring/isosurface algorithm is implemented by
vtkm::filter::contour::Contour.

class Contour : public vtkm::filter::contour::AbstractContour
Generate contours or isosurfaces from a region of space.

Contour takes as input a mesh, often a volume, and generates on output one or more surfaces where a field
equals a specified value.

This filter implements multiple algorithms for contouring, and the best algorithm will be selected based on the
type of the input.

The scalar field to extract the contour from is selected with the SetActiveField() and related methods.

Subclassed by vtkm::filter::contour::Slice, vtkm::filter::contour::SliceMultiple

vtkm::filter::contour::Contour also inherits the following methods.

inline void vtkm::filter::contour::AbstractContour::SetIsoValue(vtkm::Float64 v)
Set a field value on which to extract a contour.

This form of the method is usually used when only one contour is being extracted.

inline void vtkm::filter::contour::AbstractContour::SetIsoValue(vtkm::Id index, vtkm::Float64 v)
Set a field value on which to extract a contour.

This form is used to specify multiple contours. The method is called multiple times with different index param-
eters.

inline void vtkm::filter::contour::AbstractContour::SetIsoValues(const std::vector<vtkm::Float64>
&values)

Set multiple iso values at once.

The iso values can be specified as either a std::vector or an initializer list. So, both

std::vector<vtkm::Float64> isovalues = { 0.2, 0.5, 0.7 };
contour.SetIsoValues(isovalues);

and

contour.SetIsoValues({ 0.2, 0.5, 0.7 });

work.

inline vtkm::Float64 vtkm::filter::contour::AbstractContour::GetIsoValue(vtkm::Id index = 0) const
Return a value used to contour the mesh.

96 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void vtkm::filter::contour::AbstractContour::SetGenerateNormals(bool flag)
Set whether normals should be generated.

Normals are used in shading calculations during rendering and can make the surface appear more smooth.

Off by default.

inline bool vtkm::filter::contour::AbstractContour::GetGenerateNormals() const
Get whether normals should be generated.

inline void vtkm::filter::contour::AbstractContour::SetComputeFastNormals(bool flag)
Set whether the fast path should be used for normals computation.

When this flag is off (the default), the generated normals are based on the gradient of the field being contoured
and can be quite expensive to compute. When the flag is on, a faster method that computes the normals based
on the faces of the isosurface mesh is used, but the normals do not look as good as the gradient based normals.

This flag has no effect if SetGenerateNormals is false.

inline bool vtkm::filter::contour::AbstractContour::GetComputeFastNormals() const
Get whether the fast path should be used for normals computation.

inline void vtkm::filter::contour::AbstractContour::SetNormalArrayName(const std::string &name)
Set the name of the field for the generated normals.

inline const std::string &vtkm::filter::contour::AbstractContour::GetNormalArrayName() const
Get the name of the field for the generated normals.

inline void vtkm::filter::contour::AbstractContour::SetMergeDuplicatePoints(bool on)
Set whether the points generated should be unique for every triangle or will duplicate points be merged together.

Duplicate points are identified by the unique edge it was generated from.

Because the contour filter (like all filters in VTK-m) runs in parallel, parallel threads can (and often do) create
duplicate versions of points. When this flag is set to true, a secondary operation will find all duplicated points
and combine them together. If false, points will be duplicated. In addition to requiring more storage, duplicated
points mean that triangles next to each other will not be considered adjecent to subsequent filters.

inline bool vtkm::filter::contour::AbstractContour::GetMergeDuplicatePoints()
Get whether the points generated should be unique for every triangle or will duplicate points be merged together.

10.3. Contouring 97

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 1: Using vtkm::filter::contour::Contour.

1 vtkm::filter::contour::Contour contour;
2

3 contour.SetActiveField("pointvar");
4 contour.SetIsoValue(10.0);
5

6 vtkm::cont::DataSet isosurface = contour.Execute(inData);

10.3.2 Slice

A slice operation intersects a mesh with a surface. The vtkm::filter::contour::Slice filter uses a
vtkm::ImplicitFunctionGeneral to specify an implicit surface to slice on. A plane is a common thing to slice on,
but other surfaces are available. See Chapter 15 (Implicit Functions) for information on implicit functions.

class Slice : public vtkm::filter::contour::Contour
Intersect a mesh with an implicit surface.

This filter accepts a vtkm::ImplicitFunction that defines the surface to slice on. A vtkm::Plane is a
common function to use that cuts the mesh along a plane.

Public Functions

inline void SetImplicitFunction(const vtkm::ImplicitFunctionGeneral &func)
Set the implicit function that is used to perform the slicing.

Only a limited number of implicit functions are supported. See vtkm::ImplicitFunctionGeneral for
information on which ones.

inline const vtkm::ImplicitFunctionGeneral &GetImplicitFunction() const
Get the implicit function that us used to perform the slicing.

The vtkm::filter::contour::Slice filter inherits from the vtkm::filter::contour::Contour,
uses its implementation to extract the slices, and several of the inherited methods are
useful including vtkm::filter::contour::AbstractContour::SetGenerateNormals(),
vtkm::filter::contour::AbstractContour::GetGenerateNormals(), vtkm::filter::contour::AbstractContour::SetComputeFastNormals(),
vtkm::filter::contour::AbstractContour::GetComputeFastNormals(), vtkm::filter::contour::AbstractContour::SetNormalArrayName(),
vtkm::filter::contour::AbstractContour::GetNormalArrayName(), vtkm::filter::contour::AbstractContour::SetMergeDuplicatePoints(),
vtkm::filter::contour::AbstractContour::GetMergeDuplicatePoints(),
vtkm::filter::Field::SetActiveCoordinateSystem(), and vtkm::filter::Field::GetActiveCoordinateSystemIndex().

10.3.3 Clip with Field

Clipping is an operation that removes regions from the data set based on a user-provided value or function. The
vtkm::filter::contour::ClipWithField filter takes a clip value as an argument and removes regions where a
named scalar field is below (or above) that value. (A companion filter that discards a region of the data based on an
implicit function is described later.)

The result of vtkm::filter::contour::ClipWithField is a volume. If a cell has field values at its vertices that
are all below the specified value, then it will be discarded entirely. Likewise, if a cell has field values at its vertices
that are all above the specified value, then it will be retained in its entirety. If a cell has some vertices with field values

98 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

below the specified value and some above, then the cell will be split into the portions above the value (which will be
retained) and the portions below the value (which will be discarded).

This operation is sometimes called an isovolume because it extracts the volume of a mesh that is inside the iso-region
of a scalar. This is in contrast to an isosurface, which extracts only the surface of that iso-value. That said, a more
appropriate name is interval volume as the volume is defined by a range of values, not a single “iso” value.

vtkm::filter::contour::ClipWithField is also similar to a threshold operation, which extracts cells based on
the value of field. The difference is that threshold will either keep or remove entire cells based on the field values
whereas clip with carve cells that straddle the valid regions. See Section 10.5.6 (Threshold) for information on threshold
extraction.

class ClipWithField : public vtkm::filter::Filter
Clip a dataset using a field.

Clip a dataset using a given field value. All points that are less than that value are considered outside, and will
be discarded. All points that are greater are kept.

To select the scalar field, use the SetActiveField() and related methods.

Public Functions

inline void SetClipValue(vtkm::Float64 value)
Specifies the field value for the clip operation.

Regions where the active field is less than this value are clipped away from each input cell.

inline void SetInvertClip(bool invert)
Specifies if the result for the clip filter should be inverted.

If set to false (the default), regions where the active field is less than the specified clip value are removed.
If set to true, regions where the active field is more than the specified clip value are removed.

inline vtkm::Float64 GetClipValue() const
Specifies the field value for the clip operation.

inline bool GetInvertClip() const
Specifies if the result for the clip filter should be inverted.

10.3. Contouring 99

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 2: Using vtkm::filter::contour::ClipWithField .

1 // Create an instance of a clip filter that discards all regions with scalar
2 // value less than 25.
3 vtkm::filter::contour::ClipWithField clip;
4 clip.SetClipValue(25.0);
5 clip.SetActiveField("pointvar");
6

7 // Execute the clip filter
8 vtkm::cont::DataSet outData = clip.Execute(inData);

10.3.4 Clip with Implicit Function

The vtkm::filter::contour::ClipWithImplicitFunction function takes an implicit function and removes all
parts of the data that are inside (or outside) that function. See Chapter 15 (Implicit Functions) for more detail on how
implicit functions are represented in VTK-m. A companion filter that discards a region of the data based on the value
of a scalar field is described in Section 10.5.2 (Extract Geometry).

The result of vtkm::filter::contour::ClipWithImplicitFunction is a volume. If a cell has its vertices posi-
tioned all outside the implicit function, then it will be discarded entirely. Likewise, if a cell its vertices all inside the
implicit function, then it will be retained in its entirety. If a cell has some vertices inside the implicit function and some
outside, then the cell will be split into the portions inside (which will be retained) and the portions outside (which will
be discarded).

class ClipWithImplicitFunction : public vtkm::filter::Filter
Clip a dataset using an implicit function.

Clip a dataset using a given implicit function value, such as vtkm::Sphere or vtkm::Frustum . The im-
plicit function uses the point coordinates as its values. If there is more than one coordinate system in the input
vtkm::cont::DataSet, it can be selected with SetActiveCoordinateSystem().

Public Functions

inline void SetImplicitFunction(const vtkm::ImplicitFunctionGeneral &func)
Specifies the implicit function to be used to perform the clip operation.

Only a limited number of implicit functions are supported. See vtkm::ImplicitFunctionGeneral for
information on which ones.

inline void SetInvertClip(bool invert)
Specifies whether the result of the clip filter should be inverted.

If set to false (the default), all regions where the implicit function is negative will be removed. If set to true,
all regions where the implicit function is positive will be removed.

inline const vtkm::ImplicitFunctionGeneral &GetImplicitFunction() const
Specifies the implicit function to be used to perform the clip operation.

In the example provided below the vtkm::Sphere implicit function is used. This function evaluates to a negative
value if points from the original dataset occur within the sphere, evaluates to 0 if the points occur on the surface of the
sphere, and evaluates to a positive value if the points occur outside the sphere.

100 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 3: Using vtkm::filter::contour::ClipWithImplicitFunction.

1 // Parameters needed for implicit function
2 vtkm::Sphere implicitFunction(vtkm::make_Vec(1, 0, 1), 0.5);
3

4 // Create an instance of a clip filter with this implicit function.
5 vtkm::filter::contour::ClipWithImplicitFunction clip;
6 clip.SetImplicitFunction(implicitFunction);
7

8 // By default, ClipWithImplicitFunction will remove everything inside the sphere.
9 // Set the invert clip flag to keep the inside of the sphere and remove everything

10 // else.
11 clip.SetInvertClip(true);
12

13 // Execute the clip filter
14 vtkm::cont::DataSet outData = clip.Execute(inData);

10.4 Density Estimation

Density estimation takes a collection of samples and estimates the density of the samples in each part of the do-
main (or estimate the probabilty that a sample would be at a location in the domain). The domain of samples
could be a physical space, such as with particle density, or in an abstract place, such as with a histogram. The
vtkm::filter::density_estimate module contains filters that estimate density in a variety of ways.

10.4.1 Histogram

The vtkm::filter::density_estimate::Histogram filter computes a histogram of a given scalar field.

class Histogram : public vtkm::filter::Filter
Construct the histogram of a given field.

The range of the field is evenly split to a set number of bins (set by SetNumberOfBins()). This filter then counts
the number of values in the filter that are in each bin.

The result of this filter is stored in a vtkm::cont::DataSet with no points or cells. It con-
tains only a single field containing the histogram (bin counts). The field has an association of
vtkm::cont::Field::Association::WholeDataSet. The field contains an array of vtkm::Id with the bin
counts. By default, the field is named “histogram”, but that can be changed with the SetOutputFieldName()
method.

If this filter is run on a partitioned data set, the result will be a vtkm::cont::PartitionedDataSet containing
a single vtkm::cont::DataSet as previously described.

10.4. Density Estimation 101

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetNumberOfBins(vtkm::Id count)
Set the number of bins for the resulting histogram.

By default, a histogram with 10 bins is created.

inline vtkm::Id GetNumberOfBins() const
Get the number of bins for the resulting histogram.

inline void SetRange(const vtkm::Range &range)
Set the range to use to generate the histogram.

If range is set to empty, the field’s global range (computed using
vtkm::cont::FieldRangeGlobalCompute) will be used.

inline const vtkm::Range &GetRange() const
Get the range used to generate the histogram.

If the returned range is empty, then the field’s global range will be used.

inline vtkm::Float64 GetBinDelta() const
Returns the size of bin in the computed histogram.

This value is only valid after a call to Execute.

inline vtkm::Range GetComputedRange() const
Returns the range used for most recent execute.

If SetRange is used to specify a non-empty range, then this range will be returned. Otherwise, the coputed
range is returned. This value is only valid after a call to Execute.

10.4.2 Particle Density

VTK-m provides multiple filters to take as input a collection of points and build a regular
mesh containing an estimate of the density of particles in that space. These filters inhert from
vtkm::filter::density_estimate::ParticleDensityBase.

class ParticleDensityBase : public vtkm::filter::Filter
Subclassed by vtkm::filter::density_estimate::ParticleDensityCloudInCell, vtkm::filter::density_estimate::ParticleDensityNearestGridPoint

Public Functions

inline void SetComputeNumberDensity(bool flag)
Toggles between summing mass and computing instances.

When this flag is false (the default), the active field of the input is accumulated in each bin of the output.
When this flag is set to true, the active field is ignored and the associated particles are simply counted.

inline bool GetComputeNumberDensity() const
Toggles between summing mass and computing instances.

When this flag is false (the default), the active field of the input is accumulated in each bin of the output.
When this flag is set to true, the active field is ignored and the associated particles are simply counted.

102 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetDivideByVolume(bool flag)
Specifies whether the accumulated mass (or count) is divided by the volume of the cell.

When this flag is on (the default), the computed mass will be divided by the volume of the bin to give a
density value. Turning off this flag provides an accumulated mass or count.

inline bool GetDivideByVolume() const
Specifies whether the accumulated mass (or count) is divided by the volume of the cell.

When this flag is on (the default), the computed mass will be divided by the volume of the bin to give a
density value. Turning off this flag provides an accumulated mass or count.

inline void SetDimension(const vtkm::Id3 &dimension)
The number of bins in the grid used as regions to estimate density.

To estimate particle density, this filter defines a uniform grid in space.

The numbers specify the number of bins (i.e. cells in the output mesh) in each dimension, not the number
of points in the output mesh.

inline vtkm::Id3 GetDimension() const
The number of bins in the grid used as regions to estimate density.

To estimate particle density, this filter defines a uniform grid in space.

The numbers specify the number of bins (i.e. cells in the output mesh) in each dimension, not the number
of points in the output mesh.

inline void SetOrigin(const vtkm::Vec3f &origin)
The lower-left (minimum) corner of the domain of density estimation.

inline vtkm::Vec3f GetOrigin() const
The lower-left (minimum) corner of the domain of density estimation.

inline void SetSpacing(const vtkm::Vec3f &spacing)
The spacing of the grid points used to form the grid for density estimation.

inline vtkm::Vec3f GetSpacing() const
The spacing of the grid points used to form the grid for density estimation.

inline void SetBounds(const vtkm::Bounds &bounds)
The bounds of the region where density estimation occurs.

This method can be used in place of SetOrigin and SetSpacing. It is often easiest to compute the bounds
of the input coordinate system (or other spatial region) to use as the input.

The dimensions must be set before the bounds are set. Calling SetDimension will change the ranges of
the bounds.

Nearest Grid Point

The vtkm::filter::density_estimate::ParticleDensityNearestGridPoint filter defines a 3D grid of bins.
It then takes from the input a collection of particles, identifies which bin each particle lies in, and sums some attribute
from a field of the input (or the particles can simply be counted).

class ParticleDensityNearestGridPoint : public vtkm::filter::density_estimate::ParticleDensityBase
Estimate the density of particles using the Nearest Grid Point method.

10.4. Density Estimation 103

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

This filter takes a collection of particles. The particles are infinitesimal in size with finite mass (or other scalar at-
tributes such as charge). The filter estimates density by imposing a regular grid (as specified by SetDimensions,
SetOrigin, and SetSpacing) and summing the mass of particles within each cell in the grid. Each input par-
ticle is assigned to one bin that it falls in.

The mass of particles is established by setting the active field (using SetActiveField). Note that the “mass”
can actually be another quantity. For example, you could use electrical charge in place of mass to compute the
charge density. Once the sum of the mass is computed for each grid cell, the mass is divided by the volume of the
cell. Thus, the density will be computed as the units of the mass field per the cubic units of the coordinate system.
If you just want a sum of the mass in each cell, turn off the DivideByVolume feature of this filter. In addition,
you can also simply count the number of particles in each cell by calling SetComputeNumberDensity(true).

This operation is helpful in the analysis of particle-based simulation where the data often requires conversion
or deposition of particles’ attributes, such as mass, to an overlaying mesh. This allows further identification of
regions of interest based on the spatial distribution of particles attributes, for example, high density regions could
be considered as clusters or halos while low density regions could be considered as bubbles or cavities in the
particle data.

Since there is no specific vtkm::cont::CellSet for particles in VTK-m, this filter treats the
vtkm::cont::CoordinateSystem of the vtkm::cont::DataSet as the positions of the particles while ig-
noring the details of the vtkm::cont::CellSet.

Cloud in Cell

The vtkm::filter::density_estimate::ParticleDensityCloudInCell filter defines a 3D grid of bins. It
then takes from the input a collection of particles, identifies which bin each particle lies in, and then redistributes each
particle’s attribute to the 8 vertices of the containing bin. The filter then sums up all the contributions of particles for
each bin in the grid.

class ParticleDensityCloudInCell : public vtkm::filter::density_estimate::ParticleDensityBase
Estimate the density of particles using the Cloud-in-Cell method.

This filter takes a collection of particles. The particles are infinitesimal in size with finite mass (or other
scalar attributes such as charge). The filter estimates density by imposing a regular grid (as specified
by SetDimensions, SetOrigin, and SetSpacing) and summing the mass of particles within each cell
in the grid. The particle’s mass is divided among the 8 nearest neighboring bins. This differs from
ParticleDensityNearestGridPoint, which just finds the nearest containing bin.

The mass of particles is established by setting the active field (using SetActiveField). Note that the “mass”
can actually be another quantity. For example, you could use electrical charge in place of mass to compute the
charge density. Once the sum of the mass is computed for each grid cell, the mass is divided by the volume of the
cell. Thus, the density will be computed as the units of the mass field per the cubic units of the coordinate system.
If you just want a sum of the mass in each cell, turn off the DivideByVolume feature of this filter. In addition,
you can also simply count the number of particles in each cell by calling SetComputeNumberDensity(true).

This operation is helpful in the analysis of particle-based simulation where the data often requires conversion
or deposition of particles’ attributes, such as mass, to an overlaying mesh. This allows further identification of
regions of interest based on the spatial distribution of particles attributes, for example, high density regions could
be considered as clusters or halos while low density regions could be considered as bubbles or cavities in the
particle data.

104 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.4.3 Statistics

Simple descriptive statics for data in field arrays can be computed with
vtkm::filter::density_estimate::Statistics.

class Statistics : public vtkm::filter::Filter
Computes descriptive statistics of an input field.

This filter computes the following statistics on the active field of the input.

• N

• Min

• Max

• Sum

• Mean

• M2

• M3

• M4

• SampleStddev

• PopulationStddev

• SampleVariance

• PopulationVariance

• Skewness

• Kurtosis

M2, M3, and M4 are the second, third, and fourth moments, respectively.

Note that this filter treats the “sample” and the “population” as the same with the same mean. The difference
between the two forms of variance is how they are normalized. The population variance is normalized by dividing
the second moment by N. The sample variance uses Bessel’s correction and divides the second moment by N-1
instead. The standard deviation, which is just the square root of the variance, follows the same difference.

The result of this filter is stored in a vtkm::cont::DataSet with no points or cells. It con-
tains only fields with the same names as the list above. All fields have an association of
vtkm::cont::Field::Association::WholeDataSet.

If Execute is called with a vtkm::cont::PartitionedDataSet, then the partitions of the output will match
those of the input. Additionally, the containing vtkm::cont::PartitionedDataSet will contain the same
fields associated with vtkm::cont::Field::Association::Global that provide the overall statistics of all
partitions.

If this filter is used inside of an MPI job, then each vtkm::cont::DataSet result will be local to the MPI
rank. If Execute is called with a vtkm::cont::PartitionedDataSet, then the fields attached to the
vtkm::cont::PartitionedDataSet container will have the overall statistics across all MPI ranks (in ad-
dition to all partitions). Global MPI statistics for a single vtkm::cont::DataSet can be computed by creating
a vtkm::cont::PartitionedDataSet with that as a single partition.

10.4. Density Estimation 105

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.5 Entity Extraction

VTK-m contains a collection of filters that extract a portion of one vtkm::cont::DataSet and construct
a new vtkm::cont::DataSet based on that portion of the geometry. These filters are collected in the
vtkm::filter::entity_extraction module.

10.5.1 External Faces

vtkm::filter::entity_extraction::ExternalFaces is a filter that extracts all the external faces from a poly-
hedral data set. An external face is any face that is on the boundary of a mesh. Thus, if there is a hole in a volume, the
boundary of that hole will be considered external. More formally, an external face is one that belongs to only one cell
in a mesh.

class ExternalFaces : public vtkm::filter::Filter
Extract external faces of a geometry.

ExternalFaces is a filter that extracts all external faces from a data set. An external face is defined is defined
as a face/side of a cell that belongs only to one cell in the entire mesh.

Public Functions

inline virtual bool CanThread() const override
Returns whether the filter can execute on partitions in concurrent threads.

If a derived class’s implementation of DoExecute cannot run on multiple threads, then the derived class
should override this method to return false.

inline bool GetCompactPoints() const
Option to remove unused points and compact result int a smaller array.

When CompactPoints is on, instead of copying the points and point fields from the input, the filter will
create new compact fields without the unused elements. When off (the default), unused points will remain
listed in the topology, but point fields and coordinate systems will be shallow-copied to the output.

inline void SetCompactPoints(bool value)
Option to remove unused points and compact result int a smaller array.

When CompactPoints is on, instead of copying the points and point fields from the input, the filter will
create new compact fields without the unused elements. When off (the default), unused points will remain
listed in the topology, but point fields and coordinate systems will be shallow-copied to the output.

inline bool GetPassPolyData() const
Specify how polygonal data (polygons, lines, and vertices) will be handled.

When on (the default), these cells will be passed to the output. When off, these cells will be removed from
the output. (Because they have less than 3 topological dimensions, they are not considered to have any
“faces.”)

void SetPassPolyData(bool value)
Specify how polygonal data (polygons, lines, and vertices) will be handled.

When on (the default), these cells will be passed to the output. When off, these cells will be removed from
the output. (Because they have less than 3 topological dimensions, they are not considered to have any
“faces.”)

106 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.5.2 Extract Geometry

The vtkm::filter::entity_extraction::ExtractGeometry filter extracts all of the cells in a
vtkm::cont::DataSet that is inside or outside of an implicit function. Implicit functions are described in
Chapter 15 (Implicit Functions). They define a function in 3D space that follow a geometric shape. The inside of the
implicit function is the region of negative values.

class ExtractGeometry : public vtkm::filter::Filter
Extract a subset of geometry based on an implicit function.

Extracts from its input geometry all cells that are either completely inside or outside of a specified implicit
function. Any type of data can be input to this filter.

To use this filter you must specify an implicit function. You must also specify whether to extract cells laying
inside or outside of the implicit function. (The inside of an implicit function is the negative values region.) An
option exists to extract cells that are neither inside or outside (i.e., boundary).

This differs from vtkm::filter::contour::ClipWithImplicitFunction in that
vtkm::filter::contour::ClipWithImplicitFunction will subdivide boundary cells into new cells
whereas this filter will not, producing a more “crinkly” output.

Public Functions

inline void SetImplicitFunction(const vtkm::ImplicitFunctionGeneral &func)
Specifies the implicit function to be used to perform extract geometry.

Only a limited number of implicit functions are supported. See vtkm::ImplicitFunctionGeneral for
information on which ones.

inline bool GetExtractInside() const
Specify the region of the implicit function to keep cells.

Determines whether to extract the geometry that is on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

inline void SetExtractInside(bool value)
Specify the region of the implicit function to keep cells.

Determines whether to extract the geometry that is on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

inline void ExtractInsideOn()
Specify the region of the implicit function to keep cells.

Determines whether to extract the geometry that is on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

inline void ExtractInsideOff()
Specify the region of the implicit function to keep cells.

Determines whether to extract the geometry that is on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

10.5. Entity Extraction 107

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline bool GetExtractBoundaryCells() const
Specify whether cells on the boundary should be extracted.

The implicit function used to extract geometry is likely to intersect some of the cells of the input. If this
flag is true, then any cells intersected by the implicit function are extracted and included in the output. This
flag is false by default.

inline void SetExtractBoundaryCells(bool value)
Specify whether cells on the boundary should be extracted.

The implicit function used to extract geometry is likely to intersect some of the cells of the input. If this
flag is true, then any cells intersected by the implicit function are extracted and included in the output. This
flag is false by default.

inline void ExtractBoundaryCellsOn()
Specify whether cells on the boundary should be extracted.

The implicit function used to extract geometry is likely to intersect some of the cells of the input. If this
flag is true, then any cells intersected by the implicit function are extracted and included in the output. This
flag is false by default.

inline void ExtractBoundaryCellsOff()
Specify whether cells on the boundary should be extracted.

The implicit function used to extract geometry is likely to intersect some of the cells of the input. If this
flag is true, then any cells intersected by the implicit function are extracted and included in the output. This
flag is false by default.

inline bool GetExtractOnlyBoundaryCells() const
Specify whether to extract cells only on the boundary.

When this flag is off (the default), this filter extract the geometry in the region specified by the implicit
function. When this flag is on, then only those cells that intersect the surface of the implicit function are
extracted.

inline void SetExtractOnlyBoundaryCells(bool value)
GetExtractOnlyBoundaryCells.

inline void ExtractOnlyBoundaryCellsOn()
GetExtractOnlyBoundaryCells.

inline void ExtractOnlyBoundaryCellsOff()
GetExtractOnlyBoundaryCells.

10.5.3 Extract Points

The vtkm::filter::entity_extraction::ExtractPoints filter behaves the same as
vtkm::filter::entity_extraction::ExtractGeometry (Section 10.5.2) except that the geometry is con-
verted into a point cloud. The filter determines whether each point is inside or outside the implicit function and passes
only those that match the criteria. The cell information of the input is thrown away and replaced with a cell set of
“vertex” cells, one per point.

class ExtractPoints : public vtkm::filter::Filter
Extract only points from a geometry using an implicit function.

Extract only the points that are either inside or outside of a VTK-m implicit function. Examples include planes,
spheres, boxes, etc.

108 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Note that while any geometry type can be provided as input, the output is represented by an explicit representation
of points using vtkm::cont::CellSetSingleType with one vertex cell per point.

Public Functions

inline bool GetCompactPoints() const
Option to remove unused points and compact result int a smaller array.

When CompactPoints is on, instead of copying the points and point fields from the input, the filter will
create new compact fields without the unused elements. When off (the default), unused points will remain
listed in the topology, but point fields and coordinate systems will be shallow-copied to the output.

inline void SetCompactPoints(bool value)
Option to remove unused points and compact result int a smaller array.

When CompactPoints is on, instead of copying the points and point fields from the input, the filter will
create new compact fields without the unused elements. When off (the default), unused points will remain
listed in the topology, but point fields and coordinate systems will be shallow-copied to the output.

inline void SetImplicitFunction(const vtkm::ImplicitFunctionGeneral &func)
Specifies the implicit function to be used to perform extract points.

Only a limited number of implicit functions are supported. See vtkm::ImplicitFunctionGeneral for
information on which ones.

inline bool GetExtractInside() const
Specify the region of the implicit function to keep points.

Determines whether to extract the points that are on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

inline void SetExtractInside(bool value)
Specify the region of the implicit function to keep points.

Determines whether to extract the points that are on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

inline void ExtractInsideOn()
Specify the region of the implicit function to keep points.

Determines whether to extract the points that are on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

inline void ExtractInsideOff()
Specify the region of the implicit function to keep points.

Determines whether to extract the points that are on the inside of the implicit function (where the function
is less than 0) or the outside (where the function is greater than 0). This flag is true by default (i.e., the
interior of the implicit function will be extracted).

10.5. Entity Extraction 109

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.5.4 Extract Structured

vtkm::filter::entity_extraction::ExtractStructured is a filter that extracts a volume of interest (VOI)
from a structured data set. In addition the filter is able to subsample the VOI while doing the extraction. The input and
output of this filter are a structured data sets.

class ExtractStructured : public vtkm::filter::Filter
Select a piece (e.g., volume of interest) and/or subsample structured points dataset.

Select or subsample a portion of an input structured dataset. The selected portion of interested is referred to as
the Volume Of Interest, or VOI. The output of this filter is a structured dataset. The filter treats input data of
any topological dimension (i.e., point, line, plane, or volume) and can generate output data of any topological
dimension.

To use this filter set the VOI ivar which are i-j-k min/max indices that specify a rectangular region in the data.
(Note that these are 0-offset.) You can also specify a sampling rate to subsample the data.

Typical applications of this filter are to extract a slice from a volume for image processing, subsampling large
volumes to reduce data size, or extracting regions of a volume with interesting data.

Public Functions

inline vtkm::RangeId3 GetVOI() const
Specifies what volume of interest (VOI) should be extracted by the filter.

The VOI is specified using the 3D indices of the structured mesh. Meshes with fewer than 3 dimensions
will ignore the extra dimensions in the VOI. The VOI is inclusive on the minium index and exclusive on
the maximum index.

By default the VOI is the entire input.

inline void SetVOI(vtkm::Id i0, vtkm::Id i1, vtkm::Id j0, vtkm::Id j1, vtkm::Id k0, vtkm::Id k1)
Specifies what volume of interest (VOI) should be extracted by the filter.

The VOI is specified using the 3D indices of the structured mesh. Meshes with fewer than 3 dimensions
will ignore the extra dimensions in the VOI. The VOI is inclusive on the minium index and exclusive on
the maximum index.

By default the VOI is the entire input.

inline void SetVOI(vtkm::Id extents[6])
Specifies what volume of interest (VOI) should be extracted by the filter.

The VOI is specified using the 3D indices of the structured mesh. Meshes with fewer than 3 dimensions
will ignore the extra dimensions in the VOI. The VOI is inclusive on the minium index and exclusive on
the maximum index.

By default the VOI is the entire input.

inline void SetVOI(vtkm::Id3 minPoint, vtkm::Id3 maxPoint)
Specifies what volume of interest (VOI) should be extracted by the filter.

The VOI is specified using the 3D indices of the structured mesh. Meshes with fewer than 3 dimensions
will ignore the extra dimensions in the VOI. The VOI is inclusive on the minium index and exclusive on
the maximum index.

By default the VOI is the entire input.

110 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetVOI(const vtkm::RangeId3 &voi)
Specifies what volume of interest (VOI) should be extracted by the filter.

The VOI is specified using the 3D indices of the structured mesh. Meshes with fewer than 3 dimensions
will ignore the extra dimensions in the VOI. The VOI is inclusive on the minium index and exclusive on
the maximum index.

By default the VOI is the entire input.

inline vtkm::Id3 GetSampleRate() const
Specifies the sample rate of the VOI.

The input data can be subsampled by selecting every n-th value. The sampling can be different in each
dimension. The default sampling rate is (1,1,1), meaning that no subsampling will occur.

inline void SetSampleRate(vtkm::Id i, vtkm::Id j, vtkm::Id k)
Specifies the sample rate of the VOI.

The input data can be subsampled by selecting every n-th value. The sampling can be different in each
dimension. The default sampling rate is (1,1,1), meaning that no subsampling will occur.

inline void SetSampleRate(vtkm::Id3 sampleRate)
Specifies the sample rate of the VOI.

The input data can be subsampled by selecting every n-th value. The sampling can be different in each
dimension. The default sampling rate is (1,1,1), meaning that no subsampling will occur.

10.5.5 Ghost Cell Removal

The vtkm::filter::entity_extraction::GhostCellRemove filter is used to remove cells from a data set ac-
cording to a cell centered field that specifies whether a cell is a regular cell or a ghost cell. By default, the filter will
get the ghost cell information that is registered in the input vtkm::cont::DataSet, but it also possible to specify an
arbitrary field for this purpose.

class GhostCellRemove : public vtkm::filter::Filter
Removes cells marked as ghost cells.

This filter inspects the ghost cell field of the input and removes any cells marked as ghost cells. Although this
filter nominally operates on ghost cells, other classifications, such as blanked cells, can also be recorded in the
ghost cell array. See vtkm::CellClassification for the list of flags typical in a ghost array.

By default, if the input is a structured data set the filter will attempt to output a structured data set. This will
be the case if all the cells along a boundary are marked as ghost cells together, which is common. If creating a
structured data set is not possible, an explicit data set is produced.

Public Functions

inline void SetRemoveGhostField(bool flag)
Specify whether the ghost cell array should be removed from the input.

If this flag is true, then the ghost cell array will not be passed to the output.

inline bool GetRemoveGhostField() const
Specify whether the ghost cell array should be removed from the input.

If this flag is true, then the ghost cell array will not be passed to the output.

10.5. Entity Extraction 111

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetTypesToRemove(vtkm::UInt8 typeFlags)
Specify which types of cells to remove.

The types to remove are specified by the flags in vtkm::CellClassification. Any cell with a ghost
array flag matching one or more of these flags will be removed.

inline vtkm::UInt8 GetTypesToRemove() const
Specify which types of cells to remove.

The types to remove are specified by the flags in vtkm::CellClassification. Any cell with a ghost
array flag matching one or more of these flags will be removed.

inline void SetTypesToRemoveToAll()
Set filter to remove any special cell type.

This method sets the state to remove any cell that does not have a “normal” ghost cell value of 0. Any other
value represents a cell that is placeholder or otherwise not really considered part of the cell set.

inline bool AreAllTypesRemoved() const
Returns true if all abnormal cell types are removed.

inline bool GetUseGhostCellsAsField() const
Specify whether the marked ghost cells or a named field should be used as the ghost field.

When this flag is true (the default), the filter will get from the input vtkm::cont::DataSet the field (with
the GetGhostCellField method). When this flag is false, the SetActiveField method of this class
should be used to select which field to use as ghost cells.

inline void SetUseGhostCellsAsField(bool flag)
Specify whether the marked ghost cells or a named field should be used as the ghost field.

When this flag is true (the default), the filter will get from the input vtkm::cont::DataSet the field (with
the GetGhostCellField method). When this flag is false, the SetActiveField method of this class
should be used to select which field to use as ghost cells.

10.5.6 Threshold

A threshold operation removes topology elements from a data set that do not meet a specified criterion. The
vtkm::filter::entity_extraction::Threshold filter removes all cells where the a field is outside a range of
values.

Note that vtkm::filter::entity_extraction::Threshold either passes an entire cell or discards an entire cell.
This can consequently lead to jagged surfaces at the interface of the threshold caused by the shape of cells that jut inside
or outside the removed region. See Section 10.3.3 (Clip with Field) for a clipping filter that will clip off a smooth region
of the mesh.

class Threshold : public vtkm::filter::Filter
Extracts cells that satisfy a threshold criterion.

Extracts all cells from any dataset type that satisfy a threshold criterion. The output of this filter stores its
connectivity in a vtkm::cont::CellSetExplicit<> regardless of the input dataset type or which cells are
passed.

You can threshold either on point or cell fields. If thresholding on point fields, you must specify whether a cell
should be kept if some but not all of its incident points meet the criteria.

112 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Although Threshold is primarily designed for scalar fields, there is support for thresholding on 1 or all of
the components in a vector field. See the SetComponentToTest(), SetComponentToTestToAny(), and
SetComponentToTestToAll() methods for more information.

Use SetActiveField() and related methods to set the field to threshold on.

Public Functions

inline void SetLowerThreshold(vtkm::Float64 value)
Specifies the lower scalar value.

Any cells where the scalar field is less than this value are removed.

inline void SetUpperThreshold(vtkm::Float64 value)
Specifies the upper scalar value.

Any cells where the scalar field is more than this value are removed.

inline vtkm::Float64 GetLowerThreshold() const
Specifies the lower scalar value.

Any cells where the scalar field is less than this value are removed.

inline vtkm::Float64 GetUpperThreshold() const
Specifies the upper scalar value.

Any cells where the scalar field is more than this value are removed.

void SetThresholdBelow(vtkm::Float64 value)
Sets the threshold criterion to pass any value less than or equal to value.

void SetThresholdAbove(vtkm::Float64 value)
Sets the threshold criterion to pass any value greater than or equal to value.

void SetThresholdBetween(vtkm::Float64 value1, vtkm::Float64 value2)
Set the threshold criterion to pass any value between (inclusive) the given values.

This method is equivalent to calling SetLowerThreshold(value1) and
SetUpperThreshold(value2).

inline void SetComponentToTest(vtkm::IdComponent component)
Specifies that the threshold criteria should be applied to a specific vector component.

When thresholding on a vector field (which has more than one component per entry), the Threshold filter
will by default compare the threshold criterion to the first component of the vector (component index 0).
Use this method to change the component to test against.

inline void SetComponentToTestToAny()
Specifies that the threshold criteria should be applied to a specific vector component.

This method sets that the threshold criteria should be applied to all the components of the input vector field
and a cell will pass if any the components match.

inline void SetComponentToTestToAll()
Specifies that the threshold criteria should be applied to a specific vector component.

This method sets that the threshold criteria should be applied to all the components of the input vector field
and a cell will pass if all the components match.

10.5. Entity Extraction 113

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetAllInRange(bool value)
Specify criteria for cells that have some points matching.

When thresholding on a point field, each cell must consider the multiple values associated with all incident
points. When this flag is false (the default), the cell is passed if any of the incident points matches the
threshold criterion. When this flag is true, the cell is passed only if all the incident points match the
threshold criterion.

inline bool GetAllInRange() const
Specify criteria for cells that have some points matching.

When thresholding on a point field, each cell must consider the multiple values associated with all incident
points. When this flag is false (the default), the cell is passed if any of the incident points matches the
threshold criterion. When this flag is true, the cell is passed only if all the incident points match the
threshold criterion.

inline void SetInvert(bool value)
Inverts the threshold result.

When set to true, the threshold result is inverted. That is, cells that would have been in the output with this
option set to false (the default) are excluded while cells that would have been excluded from the output are
included.

inline bool GetInvert() const
Inverts the threshold result.

When set to true, the threshold result is inverted. That is, cells that would have been in the output with this
option set to false (the default) are excluded while cells that would have been excluded from the output are
included.

10.6 Field Conversion

Field conversion modifies a field of a vtkm::cont::DataSet to have roughly equivalent values but with a different
structure. These filters allow the field to be used in places where they otherwise would not be applicable.

10.6.1 Cell Average

vtkm::filter::field_conversion::CellAverage is the cell average filter. It will take a data set with a collection
of cells and a field defined on the points of the data set and create a new field defined on the cells. The values of this
new derived field are computed by averaging the values of the input field at all the incident points. This is a simple way
to convert a point field to a cell field.

class CellAverage : public vtkm::filter::Filter
Point to cell interpolation filter.

CellAverage is a filter that transforms point data (i.e., data specified at cell points) into cell data (i.e., data specified
per cell). The method of transformation is based on averaging the data values of all points used by particular
cell.

The point field to convert comes from the active scalars. The default name for the output cell field is the same
name as the input point field. The name can be overridden as always using the SetOutputFieldName()method.

114 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.6.2 Point Average

vtkm::filter::field_conversion::PointAverage is the point average filter. It will take a data set with a col-
lection of cells and a field defined on the cells of the data set and create a new field defined on the points. The values of
this new derived field are computed by averaging the values of the input field at all the incident cells. This is a simple
way to convert a cell field to a point field.

class PointAverage : public vtkm::filter::Filter
Cell to Point interpolation filter.

PointAverage is a filter that transforms cell data (i.e., data specified per cell) into point data (i.e., data specified
at cell points). The method of transformation is based on averaging the data values of all cells using a particular
point.

The cell field to convert comes from the active scalars. The default name for the output cell field is the same name
as the input point field. The name can be overridden as always using the SetOutputFieldName() method.

10.7 Field Transform

VTK-m provides multiple filters to convert fields through some mathematical relationship.

10.7.1 Composite Vectors

The vtkm::filter::field_transform::CompositeVectors filter allows you to group multiple scalar fields into
a single vector field. This is convenient when importing data from a souce that stores vector components in separate
arrays.

class CompositeVectors : public vtkm::filter::Filter
Combine multiple scalar fields into a single vector field.

Scalar fields are selected as the active input fields, and the combined vector field is set at the output. The
SetFieldNameList()method takes a std::vector of field names to use as the component fields. Alternately,
the SetActiveField() method can be used to select the fields independently.

All of the input fields must be scalar values. The type of the first field determines the type of the output vector
field.

Public Functions

void SetFieldNameList(const std::vector<std::string> &fieldNameList, vtkm::cont::Field::Association
association = vtkm::cont::Field::Association::Any)

Specifies the names of the fields to use as components for the output.

vtkm::IdComponent GetNumberOfFields() const
The number of fields specified as inputs.

This will be the number of components in the generated field.

10.7. Field Transform 115

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.7.2 Cylindrical Coordinate System Transform

The vtkm::filter::field_transform::CylindricalCoordinateTransform filter is a coordinate system
transformation. The filter will take a data set and transform the points of the coordinate system. By default, the
filter will transform the coordinates from a Cartesian coordinate system to a cylindrical coordinate system. The order
for cylindrical coordinates is (𝑅, 𝜃, 𝑍). The output coordinate system will be set to the new computed coordinates.

class CylindricalCoordinateTransform : public vtkm::filter::Filter
Transform coordinates between Cartesian and cylindrical.

By default, this filter will transform the first coordinate system, but this can be changed by setting the active field.

The resulting transformation will be set as the first coordinate system in the output.

Public Functions

inline void SetCartesianToCylindrical()
Establish a transformation from Cartesian to cylindrical coordinates.

inline void SetCylindricalToCartesian()
Establish a transformation from cylindrical to Cartesian coordiantes.

10.7.3 Field to Colors

The vtkm::filter::field_transform::FieldToColors filter takes a field in a data set, looks up each value in a
color table, and writes the resulting colors to a new field. The color to be used for each field value is specified using
a vtkm::cont::ColorTable object. vtkm::cont::ColorTable objects are also used with VTK-m’s rendering
module and are described in Section 11.8 (Color Tables).

vtkm::filter::field_transform::FieldToColors has three modes it can use to select how it should treat the in-
put field. These input modes are contained in vtkm::filter::field_transform::FieldToColors::InputMode.
Additionally, vtkm::filter::field_transform::FieldToColors has different modes
in which it can represent colors in its output. These output modes are contained in
vtkm::filter::field_transform::FieldToColors::OutputMode.

class FieldToColors : public vtkm::filter::Filter
Convert an arbitrary field to an RGB or RGBA field.

This filter is useful for generating colors that could be used for rendering or other purposes.

Public Types

enum class InputMode
Identifiers used to specify how FieldToColors should treat its input scalars.

Values:

enumerator Scalar
Treat the field as a scalar field.

It is an error to provide a field of any type that cannot be directly converted to a basic floating point
number (such as a vector).

116 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator Magnitude
Map the magnitude of the field.

Given a vector field, the magnitude of each field value is taken before looking it up in the color table.

enumerator Component
Map a component of a vector field as if it were a scalar.

Given a vector field, a particular component is looked up in the color table as if that component were
in a scalar field. The component to map is selected with SetMappingComponent().

enum class OutputMode
Identifiers used to specify what output FieldToColors will generate.

Values:

enumerator RGB
Write out RGB fixed precision color values.

Output colors are represented as RGB values with each component represented by an unsigned byte.
Specifically, these are vtkm::Vec3ui_8 values.

enumerator RGBA
Write out RGBA fixed precision color values.

Output colors are represented as RGBA values with each component represented by an unsigned byte.
Specifically, these are vtkm::Vec4ui_8 values.

Public Functions

inline void SetColorTable(const vtkm::cont::ColorTable &table)
Specifies the vtkm::cont::ColorTable object to use to map field values to colors.

inline const vtkm::cont::ColorTable &GetColorTable() const
Specifies the vtkm::cont::ColorTable object to use to map field values to colors.

inline void SetMappingMode(InputMode mode)
Specify the mapping mode.

inline void SetMappingToScalar()
Treat the field as a scalar field.

It is an error to provide a field of any type that cannot be directly converted to a basic floating point number
(such as a vector).

inline void SetMappingToMagnitude()
Map the magnitude of the field.

Given a vector field, the magnitude of each field value is taken before looking it up in the color table.

inline void SetMappingToComponent()
Map a component of a vector field as if it were a scalar.

Given a vector field, a particular component is looked up in the color table as if that component were in a
scalar field. The component to map is selected with SetMappingComponent().

10.7. Field Transform 117

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline InputMode GetMappingMode() const
Specify the mapping mode.

inline bool IsMappingScalar() const
Returns true if this filter is in scalar mapping mode.

inline bool IsMappingMagnitude() const
Returns true if this filter is in magnitude mapping mode.

inline bool IsMappingComponent() const
Returns true if this filter is vector component mapping mode.

inline void SetMappingComponent(vtkm::IdComponent comp)
Specifies the component of the vector to use in the mapping.

This only has an effect if the input mapping mode is set to FieldToColors::InputMode::Component.

inline vtkm::IdComponent GetMappingComponent() const
Specifies the component of the vector to use in the mapping.

This only has an effect if the input mapping mode is set to FieldToColors::InputMode::Component.

inline void SetOutputMode(OutputMode mode)
Specify the output mode.

inline void SetOutputToRGB()
Write out RGB fixed precision color values.

Output colors are represented as RGB values with each component represented by an unsigned byte. Specif-
ically, these are vtkm::Vec3ui_8 values.

inline void SetOutputToRGBA()
Write out RGBA fixed precision color values.

Output colors are represented as RGBA values with each component represented by an unsigned byte.
Specifically, these are vtkm::Vec4ui_8 values.

inline OutputMode GetOutputMode() const
Specify the output mode.

inline bool IsOutputRGB() const
Returns true if this filter is in RGB output mode.

inline bool IsOutputRGBA() const
Returns true if this filter is in RGBA output mode.

void SetNumberOfSamplingPoints(vtkm::Int32 count)
Specifies how many samples to use when looking up color values.

The implementation of FieldToColors first builds an array of color samples to quickly look up colors for
particular values. The size of this lookup array can be adjusted with this parameter. By default, an array of
256 colors is used.

inline vtkm::Int32 GetNumberOfSamplingPoints() const
Specifies how many samples to use when looking up color values.

The implementation of FieldToColors first builds an array of color samples to quickly look up colors for
particular values. The size of this lookup array can be adjusted with this parameter. By default, an array of
256 colors is used.

118 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.7.4 Generate Ids

The vtkm::filter::field_transform::GenerateIds filter creates point and/or cell fields that mimic the identi-
fier for the respective element.

class GenerateIds : public vtkm::filter::Filter
Adds fields to a vtkm::cont::DataSet that give the ids for the points and cells.

This filter will add (by default) a point field named pointids that gives the index of the associated point and
likewise a cell field named cellids for the associated cell indices. These fields are useful for tracking the
provenance of the elements of a vtkm::cont::DataSet as it gets manipulated by filters. It is also convenient
for adding indices to operations designed for fields and generally creating test data.

Public Functions

inline const std::string &GetPointFieldName() const
The name given to the generated point field.

By default, the name is pointids.

inline void SetPointFieldName(const std::string &name)
The name given to the generated point field.

By default, the name is pointids.

inline const std::string &GetCellFieldName() const
The name given to the generated cell field.

By default, the name is cellids.

inline void SetCellFieldName(const std::string &name)
The name given to the generated cell field.

By default, the name is cellids.

inline bool GetGeneratePointIds() const
Specify whether the point id field is generated.

When GeneratePointIds is true (the default), a field echoing the point indices is generated. When set
to false, this output is not created.

inline void SetGeneratePointIds(bool flag)
Specify whether the point id field is generated.

When GeneratePointIds is true (the default), a field echoing the point indices is generated. When set
to false, this output is not created.

inline bool GetGenerateCellIds() const
Specify whether the cell id field is generated.

When GenerateCellIds is true (the default), a field echoing the cell indices is generated. When set to
false, this output is not created.

inline void SetGenerateCellIds(bool flag)
Specify whether the cell id field is generated.

When GenerateCellIds is true (the default), a field echoing the cell indices is generated. When set to
false, this output is not created.

10.7. Field Transform 119

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline bool GetUseFloat() const
Specify whether the generated fields should be integer or float.

When UseFloat is false (the default), then the fields generated will have type vtkm::Id . If it is set to
true, then the fields will be generated with type vtkm::FloatDefault.

inline void SetUseFloat(bool flag)
Specify whether the generated fields should be integer or float.

When UseFloat is false (the default), then the fields generated will have type vtkm::Id . If it is set to
true, then the fields will be generated with type vtkm::FloatDefault.

10.7.5 Log Values

The vtkm::filter::field_transform::LogValues filter can be used to take the logarithm of all val-
ues in a field. The filter is able to take the logarithm to a number of predefined bases identified by
vtkm::filter::field_transform::LogValues::LogBase.

class LogValues : public vtkm::filter::Filter
Adds field to a vtkm::cont::DataSet that gives the log values for the user specified field.

By default, LogValues takes a natural logarithm (of base e). The base of the logarithm can be set to one of the
bases listed in LogBase with SetBaseValue().

Logarithms are often used to rescale data to simultaneously show data at different orders of magnitude. It allows
small changes in small numbers be visible next to much larger numbers with less precision. One problem with
this approach is if there exist numbers very close to zero, the scale at the low range could make all but the smallest
numbers comparatively hard to see. Thus, LogValues supports setting a minimum value (with SetMinValue())
that will clamp any smaller values to that.

Public Types

enum class LogBase
Identifies a type of logarithm as specified by its base.

Values:

enumerator E
Take the natural logarithm.

The logarithm is set to the mathematical constant e (about 2.718). This is a constant that has many
uses in calculus and other mathematics, and a logarithm of base e is often referred to as the “natural”
logarithm.

enumerator TWO
Take the base 2 logarithm.

The base 2 logarithm is particularly useful for estimating the depth of a binary hierarchy.

enumerator TEN
Take the base 10 logarithm.

The base 10 logarithm is handy to convert a number to its order of magnitude based on our standard
base 10 human counting system.

120 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline const LogBase &GetBaseValue() const
Specify the base of the logarithm.

inline void SetBaseValue(const LogBase &base)
Specify the base of the logarithm.

inline void SetBaseValueToE()
Take the natural logarithm.

The logarithm is set to the mathematical constant e (about 2.718). This is a constant that has many uses in
calculus and other mathematics, and a logarithm of base e is often referred to as the “natural” logarithm.

inline void SetBaseValueTo2()
Take the base 2 logarithm.

The base 2 logarithm is particularly useful for estimating the depth of a binary hierarchy.

inline void SetBaseValueTo10()
Take the base 10 logarithm.

The base 10 logarithm is handy to convert a number to its order of magnitude based on our standard base
10 human counting system.

inline vtkm::FloatDefault GetMinValue() const
Specifies the minimum value to take the logarithm of.

Before taking the logarithm, this filter will check the value to this minimum value and clamp it to the
minimum value if it is lower. This is useful to prevent values from approching negative infinity.

By default, no minimum value is used.

inline void SetMinValue(const vtkm::FloatDefault &value)
Specifies the minimum value to take the logarithm of.

Before taking the logarithm, this filter will check the value to this minimum value and clamp it to the
minimum value if it is lower. This is useful to prevent values from approching negative infinity.

By default, no minimum value is used.

10.7.6 Point Elevation

The vtkm::filter::field_transform::PointElevation filter computes the “elevation” of a field of point co-
ordinates in space. Example 1 gives a demonstration of the elevation filter.

class PointElevation : public vtkm::filter::Filter
Generate a scalar field along a specified direction.

The filter will take a data set and a field of 3 dimensional vectors and compute the distance along a line defined
by a low point and a high point. Any point in the plane touching the low point and perpendicular to the line
is set to the minimum range value in the elevation whereas any point in the plane touching the high point and
perpendicular to the line is set to the maximum range value. All other values are interpolated linearly between
these two planes. This filter is commonly used to compute the elevation of points in some direction, but can be
repurposed for a variety of measures.

The default name for the output field is `elevation’, but that can be overridden as always using the
SetOutputFieldName() method.

10.7. Field Transform 121

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetLowPoint(const vtkm::Vec3f_64 &point)
Specify the coordinate of the low point.

The plane of low values is defined by the plane that contains the low point and is normal to the direction
from the low point to the high point. All vector values on this plane are assigned the low value.

inline void SetLowPoint(vtkm::Float64 x, vtkm::Float64 y, vtkm::Float64 z)
Specify the coordinate of the low point.

The plane of low values is defined by the plane that contains the low point and is normal to the direction
from the low point to the high point. All vector values on this plane are assigned the low value.

inline void SetHighPoint(const vtkm::Vec3f_64 &point)
Specify the coordinate of the high point.

The plane of high values is defined by the plane that contains the high point and is normal to the direction
from the low point to the high point. All vector values on this plane are assigned the high value.

inline void SetHighPoint(vtkm::Float64 x, vtkm::Float64 y, vtkm::Float64 z)
Specify the coordinate of the high point.

The plane of high values is defined by the plane that contains the high point and is normal to the direction
from the low point to the high point. All vector values on this plane are assigned the high value.

inline void SetRange(vtkm::Float64 low, vtkm::Float64 high)
Specify the range of values to output.

Values at the low plane are given low and values at the high plane are given high. Values in between the
planes have a linearly interpolated value based on the relative distance between the two planes.

10.7.7 Point Transform

The vtkm::filter::field_transform::PointTransform filter performs affine transforms is the point transform
filter.

class PointTransform : public vtkm::filter::Filter
Perform affine transforms to point coordinates or vector fields.

This filter will take a data set and a field of 3 dimensional vectors and perform the specified point transform
operation. Several methods are provided to apply many common affine transformations (e.g., translation, rotation,
and scale). You can also provide a general 4x4 transformation matrix with SetTransform().

The main use case for PointTransform is to perform transformations of objects in 3D space, which
is done by applying these transforms to the coordinate system. This filter will operate on the
vtkm::cont::CoordinateSystem of the input data unless a different active field is specified. Likewise, this
filter will save its results as the first coordinate system in the output unless SetChangeCoordinateSystem()
is set to say otherwise.

The default name for the output field is “transform”, but that can be overridden as always using the
SetOutputFieldName() method.

122 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetTranslation(const vtkm::FloatDefault &tx, const vtkm::FloatDefault &ty, const
vtkm::FloatDefault &tz)

Translates, or moves, each point in the input field by a given direction.

inline void SetTranslation(const vtkm::Vec3f &v)
Translates, or moves, each point in the input field by a given direction.

inline void SetRotation(const vtkm::FloatDefault &angleDegrees, const vtkm::Vec3f &axis)
Rotate the input field about a given axis.

Parameters

• angleDegrees – [in] The amount of rotation to perform, given in degrees.

• axis – [in] The rotation is made around a line that goes through the origin and pointing in
this direction in the counterclockwise direction.

inline void SetRotation(const vtkm::FloatDefault &angleDegrees, const vtkm::FloatDefault &axisX, const
vtkm::FloatDefault &axisY, const vtkm::FloatDefault &axisZ)

Rotate the input field about a given axis.

The rotation is made around a line that goes through the origin and pointing in the direction specified by
axisX, axisY, and axisZ in the counterclockwise direction.

Parameters

• angleDegrees – [in] The amount of rotation to perform, given in degrees.

• axisX – [in] The X value of the rotation axis.

• axisY – [in] The Y value of the rotation axis.

• axisZ – [in] The Z value of the rotation axis.

inline void SetRotationX(const vtkm::FloatDefault &angleDegrees)
Rotate the input field around the X axis by the given degrees.

inline void SetRotationY(const vtkm::FloatDefault &angleDegrees)
Rotate the input field around the Y axis by the given degrees.

inline void SetRotationZ(const vtkm::FloatDefault &angleDegrees)
Rotate the input field around the Z axis by the given degrees.

inline void SetScale(const vtkm::FloatDefault &s)
Scale the input field.

Each coordinate is multiplied by tghe associated scale factor.

inline void SetScale(const vtkm::FloatDefault &sx, const vtkm::FloatDefault &sy, const vtkm::FloatDefault
&sz)

Scale the input field.

Each coordinate is multiplied by tghe associated scale factor.

inline void SetScale(const vtkm::Vec3f &v)
Scale the input field.

Each coordinate is multiplied by tghe associated scale factor.

10.7. Field Transform 123

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetTransform(const vtkm::Matrix<vtkm::FloatDefault, 4, 4> &mtx)
Set a general transformation matrix.

Each field value is multiplied by this 4x4 as a homogeneous coordinate. That is a 1 component is added
to the end of each 3D vector to put it in the form [x, y, z, 1]. The matrix is then premultiplied to this as a
column vector.

The functions in vtkm/Transform3D.h can be used to help build these transform matrices.

void SetChangeCoordinateSystem(bool flag)
Specify whether the result should become the coordinate system of the output.

When this flag is on (the default) the first coordinate system in the output vtkm::cont::DataSet is set
to the transformed point coordinates.

10.7.8 Spherical Coordinate System Transform

The vtkm::filter::field_transform::SphericalCoordinateTransform filter is a coordinate system trans-
formation. The filter will take a data set and transform the points of the coordinate system. By default, the filter will
transform the coordinates from a Cartesian coordinate system to a spherical coordinate system. The order for spherical
coordinates is (𝑅, 𝜃, 𝜑) where 𝑅 is the radius, 𝜃 is the azimuthal angle and 𝜑 is the polar angle. The output coordinate
system will be set to the new computed coordinates.

class SphericalCoordinateTransform : public vtkm::filter::Filter
Transform coordinates between Cartesian and spherical.

By default, this filter will transform the first coordinate system, but this can be changed by setting the active field.

The resulting transformation will be set as the first coordinate system in the output.

Public Functions

inline void SetCartesianToSpherical()
Establish a transformation from Cartesian to spherical coordinates.

inline void SetSphericalToCartesian()
Establish a transformation from spherical to Cartesian coordiantes.

10.7.9 Warp

The vtkm::filter::field_transform::Warp filter modifies points in a vtkm::cont::DataSet by moving
points along scaled direction vectors. By default, the vtkm::filter::field_transform::Warp filter modifies
the coordinate system and writes its results to the coordiante system. A vector field can be selected as directions, or
a constant direction can be specified. A constant direction is particularly useful for generating a carpet plot. A scalar
field can be selected to scale the displacement, and a constant scale factor adjustment can be specified.

class Warp : public vtkm::filter::Filter
Modify points by moving points along scaled direction vectors.

This filter displaces the point coordinates of a dataset either in the direction of a direction vector field or in a
constant direction.

The filter starts with a set of point coordinates or other vectors. By default these vectors are the coordinate
system, but they can be changed by modifying active field 0. These vectors are then displaced by a set of vectors.

124 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

This is done by selecting a field of directions, a field of scales, and an additional scale factor. The directions are
multiplied by the scale field and the scale factor, and this displacement is added to the vector.

It is common to wish to warp in a constant direction by a scaled amount. To support this so called “WarpScalar”,
the Warp filter allows you to specify a constant direction direction with the SetConstantDirection()method.
When this is set, no direction field is retrieved. By default Warp uses (0, 0, 1) as the direction direction.

It is also common to wish to simply apply a vector direction field (with a possible constant scale). To support
this so called “WarpVector”, the Warp filter allows you to ignore the scale field with the SetUseScaleField()
method. When this is unset, no scale field is retrieved. Calling SetScaleField() turns on the UseScaleField
flag. By default, Warp uses will not use the scale field unless specified.

The main use case for Warp is to adjust the spatial location and shape of objects in 3D space. This fil-
ter will operate on the vtkm::cont::CoordinateSystem of the input data unless a different active field
is specified. Likewise, this filter will save its results as the first coordinate system in the output unless
SetChangeCoordinateSystem() is set to say otherwise.

Subclassed by vtkm::filter::field_transform::WarpScalar, vtkm::filter::field_transform::WarpVector

Public Functions

inline void SetDirectionField(const std::string &name)
Specify a field to use as the directions.

The directions, when not set to use constant directions, are set as active field index 1.

inline std::string GetDirectionFieldName() const
Specify a field to use as the directions.

The directions, when not set to use constant directions, are set as active field index 1.

inline void SetConstantDirection(const vtkm::Vec3f &direction)
Specify a constant value to use as the directions.

This will provide a (constant) direction of the direction, and the direction field will be ignored.

inline const vtkm::Vec3f &GetConstantDirection() const
Specify a constant value to use as the directions.

This will provide a (constant) direction of the direction, and the direction field will be ignored.

inline void SetUseConstantDirection(bool flag)
Specifies whether a direction field or a constant direction direction is used.

When true, the constant direction direction is used. When false, the direction field (active field index 1) is
used.

inline bool GetUseConstantDirection() const
Specifies whether a direction field or a constant direction direction is used.

When true, the constant direction direction is used. When false, the direction field (active field index 1) is
used.

inline void SetScaleField(const std::string &name)
Specify a field to use to scale the directions.

The scale factor field scales the size of the direction. The scale factor, when not set to use a constant factor,
is set as active field index 2.

10.7. Field Transform 125

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline std::string GetScaleFieldName() const
Specify a field to use to scale the directions.

The scale factor field scales the size of the direction. The scale factor, when not set to use a constant factor,
is set as active field index 2.

inline void SetUseScaleField(bool flag)
Specifies whether a scale factor field is used.

When true, a scale factor field the constant scale factor is used. When false, the scale factor field (active
field index 2) is used.

inline bool GetUseScaleField() const
Specifies whether a scale factor field is used.

When true, a scale factor field the constant scale factor is used. When false, the scale factor field (active
field index 2) is used.

inline void SetScaleFactor(vtkm::FloatDefault scale)
Specifies an additional scale factor to scale the displacements.

When using a non-constant scale field, it is possible that the scale field is of the wrong units and needs to
be rescaled. This scale factor is multiplied to the direction and scale to re-adjust the overall scale.

inline vtkm::FloatDefault GetScaleFactor() const
Specifies an additional scale factor to scale the displacements.

When using a non-constant scale field, it is possible that the scale field is of the wrong units and needs to
be rescaled. This scale factor is multiplied to the direction and scale to re-adjust the overall scale.

inline void SetChangeCoordinateSystem(bool flag)
Specify whether the result should become the coordinate system of the output.

When this flag is on (the default) the first coordinate system in the output vtkm::cont::DataSet is set
to the transformed point coordinates.

inline bool GetChangeCoordinateSystem() const
Specify whether the result should become the coordinate system of the output.

When this flag is on (the default) the first coordinate system in the output vtkm::cont::DataSet is set
to the transformed point coordinates.

10.8 Flow Analysis

Flow visualization is used to analyze vector fields that represent the movement of a fluid. The basic operation of
most flow visualization algorithms is particle advection, which traces the path a particle would take given the di-
rection and speed dictated by the vector field. There are multiple ways in which to represent flow in this man-
ner, and consequently VTK-m contains several filters that trace streams in different ways. These filters inherit from
vtkm::filter::flow::FilterParticleAdvection, which provides several important methods.

class FilterParticleAdvection : public vtkm::filter::Filter
base class for advecting particles in a vector field.

Takes as input a vector field and seed locations and advects the seeds through the flow field.

Subclassed by vtkm::filter::flow::FilterParticleAdvectionSteadyState< ParticleAd-
vection >, vtkm::filter::flow::FilterParticleAdvectionSteadyState< WarpXStream-
line >, vtkm::filter::flow::FilterParticleAdvectionSteadyState< Streamline >,

126 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::flow::FilterParticleAdvectionUnsteadyState< PathParticle >, vtkm::filter::flow::FilterParticleAdvectionUnsteadyState<
Pathline >, vtkm::filter::flow::FilterParticleAdvectionSteadyState< Derived >,
vtkm::filter::flow::FilterParticleAdvectionUnsteadyState< Derived >

Public Functions

inline virtual bool CanThread() const override
Returns whether the filter can execute on partitions in concurrent threads.

If a derived class’s implementation of DoExecute cannot run on multiple threads, then the derived class
should override this method to return false.

inline void SetStepSize(vtkm::FloatDefault s)
Specifies the step size used for the numerical integrator.

The numerical integrators operate by advancing each particle by a finite amount. This parameter defines the
distance to advance each time. Smaller values are more accurate but take longer to integrate. An appropriate
step size is usually around the size of each cell.

inline void SetNumberOfSteps(vtkm::Id n)
Specifies the maximum number of integration steps for each particle.

Some particle paths may loop and continue indefinitely. This parameter sets an upper limit on the total
length of advection.

template<typename ParticleType>
inline void SetSeeds(vtkm::cont::ArrayHandle<ParticleType> &seeds)

Specify the seed locations for the particle advection.

Each seed represents one particle that is advected by the vector field. The particles are represented by a
vtkm::Particle object or similar type of object (such as vtkm::ChargedParticle).

template<typename ParticleType>
inline void SetSeeds(const std::vector<ParticleType> &seeds, vtkm::CopyFlag copyFlag =

vtkm::CopyFlag::On)
Specify the seed locations for the particle advection.

Each seed represents one particle that is advected by the vector field. The particles are represented by a
vtkm::Particle object or similar type of object (such as vtkm::ChargedParticle).

Flow filters operate either on a “steady state” flow that does not change or on an “unsteady state” flow
that is continually changing over time. An unsteady state filter must be executed multiple times for sub-
sequent time steps. The filter operates with data from two adjacent time steps. This is managed by the
vtkm::filter::flow::FilterParticleAdvectionUnsteadyState superclass.

10.8.1 Streamlines

Streamlines are a powerful technique for the visualization of flow fields. A streamline is a curve that is parallel to
the velocity vector of the flow field. Individual streamlines are computed from an initial point location (seed) using a
numerical method to integrate the point through the flow field.

class Streamline : public vtkm::filter::flow::FilterParticleAdvectionSteadyState<Streamline>
Advect particles in a vector field and display the path they take.

10.8. Flow Analysis 127

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

This filter takes as input a velocity vector field and seed locations. It then traces the path each seed point would
take if moving at the velocity specified by the field. Mathematically, this is the curve that is tangent to the velocity
field everywhere.

The output of this filter is a vtkm::cont::DataSet containing a collection of poly-lines representing the paths
the seed particles take.

The vtkm::filter::flow::Streamline filter also uses several inherited methods:
vtkm::filter::flow::FilterParticleAdvection::SetSeeds(), vtkm::filter::flow::FilterParticleAdvection::SetStepSize(),
and vtkm::filter::flow::FilterParticleAdvection::SetNumberOfSteps().

Example 4: Using vtkm::filter::flow::Streamline.

1 vtkm::filter::flow::Streamline streamlines;
2

3 // Specify the seeds.
4 vtkm::cont::ArrayHandle<vtkm::Particle> seedArray;
5 seedArray.Allocate(2);
6 seedArray.WritePortal().Set(0, vtkm::Particle({ 0, 0, 0 }, 0));
7 seedArray.WritePortal().Set(1, vtkm::Particle({ 1, 1, 1 }, 1));
8

9 streamlines.SetActiveField("vectorvar");
10 streamlines.SetStepSize(0.1f);
11 streamlines.SetNumberOfSteps(100);
12 streamlines.SetSeeds(seedArray);
13

14 vtkm::cont::DataSet output = streamlines.Execute(inData);

10.8.2 Pathlines

Pathlines are the analog to streamlines for time varying vector fields. Individual pathlines are computed from an initial
point location (seed) using a numerical method to integrate the point through the flow field.

This filter requires two data sets as input, which represent the data for two sequential time steps. The “Previous” data
set, which marks the data at the earlier time step, is passed into the filter throught the standard Execute method. The
“Next” data set, which marks the data at the later time step, is specified as state to the filter using methods.

class Pathline : public vtkm::filter::flow::FilterParticleAdvectionUnsteadyState<Pathline>
Advect particles in a time-varying vector field and display the path they take.

This filter takes as input a velocity vector field, changing between two time steps, and seed locations. It then
traces the path each seed point would take if moving at the velocity specified by the field.

The output of this filter is a vtkm::cont::DataSet containing a collection of poly-lines representing the paths
the seed particles take.

As an unsteady state flow filter, vtkm::filter::flow::Pathline must be executed multiple times for sub-
sequent time steps. The filter operates with data from two adjacent time steps. This is managed by the
vtkm::filter::flow::FilterParticleAdvectionUnsteadyState superclass.

The vtkm::filter::flow::Pathline filter uses several other inherited methods:
vtkm::filter::flow::FilterParticleAdvectionUnsteadyState::SetPreviousTime(),
vtkm::filter::flow::FilterParticleAdvectionUnsteadyState::SetNextTime(),
vtkm::filter::flow::FilterParticleAdvectionUnsteadyState::SetNextDataSet(),
vtkm::filter::flow::FilterParticleAdvection::SetSeeds(), vtkm::filter::flow::FilterParticleAdvection::SetStepSize(),
and vtkm::filter::flow::FilterParticleAdvection::SetNumberOfSteps().

128 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 5: Using vtkm::filter::flow::Pathline.

1 vtkm::filter::flow::Pathline pathlines;
2

3 // Specify the seeds.
4 vtkm::cont::ArrayHandle<vtkm::Particle> seedArray;
5 seedArray.Allocate(2);
6 seedArray.WritePortal().Set(0, vtkm::Particle({ 0, 0, 0 }, 0));
7 seedArray.WritePortal().Set(1, vtkm::Particle({ 1, 1, 1 }, 1));
8

9 pathlines.SetActiveField("vectorvar");
10 pathlines.SetStepSize(0.1f);
11 pathlines.SetNumberOfSteps(100);
12 pathlines.SetSeeds(seedArray);
13 pathlines.SetPreviousTime(0.0f);
14 pathlines.SetNextTime(1.0f);
15 pathlines.SetNextDataSet(inData2);
16

17 vtkm::cont::DataSet pathlineCurves = pathlines.Execute(inData1);

10.8.3 Stream Surface

A stream surface is defined as a continuous surface that is everywhere tangent to a specified vector field. The
vtkm::filter::flow::StreamSurface filter computes a stream surface from a set of input points and the vec-
tor field of the input data set. The stream surface is created by creating streamlines from each input point and then
connecting adjacent streamlines with a series of triangles.

class StreamSurface : public vtkm::filter::Filter
Generate stream surfaces from a vector field.

This filter takes as input a velocity vector field and seed locations. The seed locations should be arranged in a
line or curve. The filter then traces the path each seed point would take if moving at the velocity specified by the
field and connects all the lines together into a surface. Mathematically, this is the surface that is tangent to the
velocity field everywhere.

The output of this filter is a vtkm::cont::DataSet containing a mesh for the created surface.

Public Functions

inline void SetStepSize(vtkm::FloatDefault s)
Specifies the step size used for the numerical integrator.

The numerical integrators operate by advancing each particle by a finite amount. This parameter defines the
distance to advance each time. Smaller values are more accurate but take longer to integrate. An appropriate
step size is usually around the size of each cell.

inline void SetNumberOfSteps(vtkm::Id n)
Specifies the maximum number of integration steps for each particle.

Some particle paths may loop and continue indefinitely. This parameter sets an upper limit on the total
length of advection.

template<typename ParticleType>

10.8. Flow Analysis 129

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetSeeds(vtkm::cont::ArrayHandle<ParticleType> &seeds)
Specify the seed locations for the particle advection.

Each seed represents one particle that is advected by the vector field. The particles are represented by a
vtkm::Particle object.

template<typename ParticleType>
inline void SetSeeds(const std::vector<ParticleType> &seeds, vtkm::CopyFlag copyFlag =

vtkm::CopyFlag::On)
Specify the seed locations for the particle advection.

Each seed represents one particle that is advected by the vector field. The particles are represented by a
vtkm::Particle object.

Example 6: Using vtkm::filter::flow::StreamSurface.

1 vtkm::filter::flow::StreamSurface streamSurface;
2

3 // Specify the seeds.
4 vtkm::cont::ArrayHandle<vtkm::Particle> seedArray;
5 seedArray.Allocate(2);
6 seedArray.WritePortal().Set(0, vtkm::Particle({ 0, 0, 0 }, 0));
7 seedArray.WritePortal().Set(1, vtkm::Particle({ 1, 1, 1 }, 1));
8

9 streamSurface.SetActiveField("vectorvar");
10 streamSurface.SetStepSize(0.1f);
11 streamSurface.SetNumberOfSteps(100);
12 streamSurface.SetSeeds(seedArray);
13

14 vtkm::cont::DataSet output = streamSurface.Execute(inData);

10.8.4 Lagrangian Coherent Structures

Lagrangian coherent structures (LCS) are distinct structures present in a flow field that have a major influence over
nearby trajectories over some interval of time. Some of these structures may be sources, sinks, saddles, or vor-
tices in the flow field. Identifying Lagrangian coherent structures is part of advanced flow analysis and is an im-
portant part of studying flow fields. These structures can be studied by calculating the finite time Lyapunov exponent
(FTLE) for a flow field at various locations, usually over a regular grid encompassing the entire flow field. If the pro-
vided input dataset is structured, then by default the points in this data set will be used as seeds for advection. The
vtkm::filter::flow::LagrangianStructures filter is used to compute the FTLE of a flow field.

class LagrangianStructures : public vtkm::filter::Filter
Compute the finite time Lyapunov exponent (FTLE) of a vector field.

The FTLE is computed by advecting particles throughout the vector field and analyizing where they diverge
or converge. By default, the points of the input vtkm::cont::DataSet are all advected for this computation
unless an auxiliary grid is established.

130 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline virtual bool CanThread() const override
Returns whether the filter can execute on partitions in concurrent threads.

If a derived class’s implementation of DoExecute cannot run on multiple threads, then the derived class
should override this method to return false.

inline void SetStepSize(vtkm::FloatDefault s)
Specifies the step size used for the numerical integrator.

The numerical integrators operate by advancing each particle by a finite amount. This parameter defines the
distance to advance each time. Smaller values are more accurate but take longer to integrate. An appropriate
step size is usually around the size of each cell.

inline vtkm::FloatDefault GetStepSize()
Specifies the step size used for the numerical integrator.

The numerical integrators operate by advancing each particle by a finite amount. This parameter defines the
distance to advance each time. Smaller values are more accurate but take longer to integrate. An appropriate
step size is usually around the size of each cell.

inline void SetNumberOfSteps(vtkm::Id n)
Specify the maximum number of steps each particle is allowed to traverse.

This can limit the total length of displacements used when computing the FTLE.

inline vtkm::Id GetNumberOfSteps()
Specify the maximum number of steps each particle is allowed to traverse.

This can limit the total length of displacements used when computing the FTLE.

inline void SetAdvectionTime(vtkm::FloatDefault advectionTime)
Specify the time interval for the advection.

The FTLE works by advecting all points a finite distance, and this parameter specifies how far to advect.

inline vtkm::FloatDefault GetAdvectionTime()
Specify the time interval for the advection.

The FTLE works by advecting all points a finite distance, and this parameter specifies how far to advect.

inline void SetUseAuxiliaryGrid(bool useAuxiliaryGrid)
Specify whether to use an auxiliary grid.

When this flag is off (the default), then the points of the mesh representing the vector field are advected and
used for computing the FTLE. However, if the mesh is too coarse, the FTLE will likely be inaccurate. Or
if the mesh is unstructured the FTLE may be less efficient to compute. When this flag is on, an auxiliary
grid of uniformly spaced points is used for the FTLE computation.

inline bool GetUseAuxiliaryGrid()
Specify whether to use an auxiliary grid.

When this flag is off (the default), then the points of the mesh representing the vector field are advected and
used for computing the FTLE. However, if the mesh is too coarse, the FTLE will likely be inaccurate. Or
if the mesh is unstructured the FTLE may be less efficient to compute. When this flag is on, an auxiliary
grid of uniformly spaced points is used for the FTLE computation.

10.8. Flow Analysis 131

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetAuxiliaryGridDimensions(vtkm::Id3 auxiliaryDims)
Specify the dimensions of the auxiliary grid for FTLE calculation.

Seeds for advection will be placed along the points of this auxiliary grid. This option has no effect unless
the UseAuxiliaryGrid option is on.

inline vtkm::Id3 GetAuxiliaryGridDimensions()
Specify the dimensions of the auxiliary grid for FTLE calculation.

Seeds for advection will be placed along the points of this auxiliary grid. This option has no effect unless
the UseAuxiliaryGrid option is on.

inline void SetUseFlowMapOutput(bool useFlowMapOutput)
Specify whether to use flow maps instead of advection.

If the start and end points for FTLE calculation are known already, advection is an unnecessary step. This
flag allows users to bypass advection, and instead use a precalculated flow map. By default this option is
off.

inline bool GetUseFlowMapOutput()
Specify whether to use flow maps instead of advection.

If the start and end points for FTLE calculation are known already, advection is an unnecessary step. This
flag allows users to bypass advection, and instead use a precalculated flow map. By default this option is
off.

inline void SetOutputFieldName(std::string outputFieldName)
Specify the name of the output field in the data set returned.

By default, the field will be named FTLE.

inline std::string GetOutputFieldName()
Specify the name of the output field in the data set returned.

By default, the field will be named FTLE.

inline void SetFlowMapOutput(vtkm::cont::ArrayHandle<vtkm::Vec3f > &flowMap)
Specify the array representing the flow map output to be used for FTLE calculation.

inline vtkm::cont::ArrayHandle<vtkm::Vec3f > GetFlowMapOutput()
Specify the array representing the flow map output to be used for FTLE calculation.

10.9 Geometry Refinement

Geometry refinement modifies the geometry of a vtkm::cont::DataSet. It might add, change, or remove compo-
nents of the structure, but the general representation will be the same.

132 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.9.1 Convert to a Point Cloud

Data in a vtkm::cont::DataSet is typically connected together by cells in a mesh structure. However, it is some-
times the case where data are simply represented as a cloud of unconnected points. These meshless data sets are best
represented in a vtkm::cont::DataSet by a collection of “vertex” cells.

The vtkm::filter::geometry_refinement::ConvertToPointCloud filter converts a data to a point cloud.
It does this by throwing away any existing cell set and replacing it with a collection of vertex cells, one
per point. vtkm::filter::geometry_refinement::ConvertToPointCloud is useful to add a cell set to a
vtkm::cont::DataSet that has points but no cells. It is also useful to treat data as a collection of sample points
rather than an interconnected mesh.

class ConvertToPointCloud : public vtkm::filter::Filter
Convert a DataSet to a point cloud.

A point cloud in VTK-m is represented as a data set with “vertex” shape cells. This filter replaces the CellSet
in a DataSet with a CellSet of only vertex cells. There will be one cell per point.

This filter is useful for dropping the cells of any DataSet so that you can operate on it as just a collection of
points. It is also handy for completing a DataSet that does not have a CellSet associated with it or has points
that do not belong to cells.

Note that all fields associated with cells are dropped. This is because the cells are dropped.

Public Functions

inline void SetAssociateFieldsWithCells(bool flag)
By default, all the input point fields are kept as point fields in the output.

However, the output has exactly one cell per point and it might be easier to treat the fields as cell fields.
When this flag is turned on, the point field association is changed to cell.

Note that any field that is marked as point coordinates will remain as point fields. It is not valid to set a cell
field as the point coordinates.

inline bool GetAssociateFieldsWithCells() const
By default, all the input point fields are kept as point fields in the output.

However, the output has exactly one cell per point and it might be easier to treat the fields as cell fields.
When this flag is turned on, the point field association is changed to cell.

Note that any field that is marked as point coordinates will remain as point fields. It is not valid to set a cell
field as the point coordinates.

10.9.2 Shrink

The vtkm::filter::geometry_refinement::Shrink independently reduces the size of each
class. Rather than uniformly reduce the size of the whole data set (which can be done with
vtkm::filter::field_transform::PointTransform), this filter separates the cells from each other and
shrinks them around their centroid. This is useful for making an “exploded view” of the data where the facets of the
data are moved away from each other to see inside.

class Shrink : public vtkm::filter::Filter
Shrink cells of an arbitrary dataset by a constant factor.

10.9. Geometry Refinement 133

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The Shrink filter shrinks the cells of a DataSet towards their centroid, computed as the average position of the
cell points. This filter disconnects the cells, duplicating the points connected to multiple cells. The resulting
CellSet is always an ExplicitCellSet.

Public Functions

inline void SetShrinkFactor(vtkm::FloatDefault factor)
Specify the scale factor to size each cell.

The shrink factor specifies the ratio of the shrunk cell to its original size. This value must be between 0 and
1. A value of 1 is the same size as the input, and a value of 0 shrinks each cell to a point.

inline vtkm::FloatDefault GetShrinkFactor() const
Specify the scale factor to size each cell.

The shrink factor specifies the ratio of the shrunk cell to its original size. This value must be between 0 and
1. A value of 1 is the same size as the input, and a value of 0 shrinks each cell to a point.

10.9.3 Split Sharp Edges

The vtkm::filter::geometry_refinement::SplitSharpEdges filter splits sharp manifold edges where the fea-
ture angle between the adjacent surfaces are larger than a threshold value. This is most useful to preserve sharp edges
when otherwise applying smooth shading during rendering.

class SplitSharpEdges : public vtkm::filter::Filter
Split sharp polygon mesh edges with a large feature angle between the adjacent cells.

Split sharp manifold edges where the feature angle between the adjacent polygonal cells are larger than a threshold
value. The feature angle is the angle between the normals of the two polygons. Two polygons on the same plane
have a feature angle of 0. Perpendicular polygons have a feature angle of 90 degrees.

When an edge is split, it adds a new point to the coordinates and updates the connectivity of an adjacent surface.
For example, consider two adjacent triangles (0,1,2) and (2,1,3) where edge (1,2) needs to be split. Two new
points 4 (duplication of point 1) and 5 (duplication of point 2) would be added and the later triangle’s connectivity
would be changed to (5,4,3). By default, all old point’s fields would be copied to the new point.

Note that “split” edges do not have space added between them. They are still adjacent visually, but the topology
becomes disconnectered there. Splitting sharp edges is most useful to duplicate normal shading vectors to make
a sharp shading effect.

Public Functions

inline void SetFeatureAngle(vtkm::FloatDefault value)
Specify the feature angle threshold to split on.

The feature angle is the angle between the normals of the two polygons. Two polygons on the same plane
have a feature angle of 0. Perpendicular polygons have a feature angle of 90 degrees.

Any edge with a feature angle larger than this threshold will be split. The feature angle is specified in
degrees. The default value is 30 degrees.

134 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::FloatDefault GetFeatureAngle() const
Specify the feature angle threshold to split on.

The feature angle is the angle between the normals of the two polygons. Two polygons on the same plane
have a feature angle of 0. Perpendicular polygons have a feature angle of 90 degrees.

Any edge with a feature angle larger than this threshold will be split. The feature angle is specified in
degrees. The default value is 30 degrees.

10.9.4 Tetrahedralize

The vtkm::filter::geometry_refinement::Tetrahedralize filter converts all the polyhedra in a
vtkm::cont::DataSet into tetrahedra.

class Tetrahedralize : public vtkm::filter::Filter
Convert all polyhedra of a vtkm::cont::DataSet into tetrahedra.

Note that although the tetrahedra will occupy the same space of the cells that they replace, the interpolation of
point fields within these cells might differ. For example, the first order interpolation of a hexahedron uses trilinear
interpolation, which actually results in cubic equations. This differs from the purely linear field in a tetrahedron,
so the tetraheda replacement of the hexahedron will not have exactly the same interpolation.

10.9.5 Triangulate

The vtkm::filter::geometry_refinement::Triangulate filter converts all the polyhedra in a
vtkm::cont::DataSet into tetrahedra.

class Triangulate : public vtkm::filter::Filter
Convert all polygons of a vtkm::cont::DataSet into triangles.

Note that although the triangles will occupy the same space of the cells that they replace, the interpolation of point
fields within these cells might differ. For example, the first order interpolation of a quadrilateral uses bilinear
interpolation, which actually results in quadratic equations. This differs from the purely linear field in a triangle,
so the triangle replacement of the quadrilateral will not have exactly the same interpolation.

10.9.6 Tube

The vtkm::filter::geometry_refinement::Tube filter generates a tube around each line and polyline in the input
data set.

class Tube : public vtkm::filter::Filter
Generate a tube around each line and polyline.

The radius, number of sides, and end capping can be specified for each tube. The orientation of the geometry of
the tube are computed automatically using a heuristic to minimize the twisting along the input data set.

10.9. Geometry Refinement 135

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetRadius(vtkm::FloatDefault r)
Specify the radius of each tube.

inline void SetNumberOfSides(vtkm::Id n)
Specify the number of sides for each tube.

The tubes are generated using a polygonal approximation. This option determines how many facets will be
generated around the tube.

inline void SetCapping(bool v)
The Tube filter can optionally add a cap at the ends of each tube.

This option specifies whether that cap is generated.

Example 7: Using vtkm::filter::geometry_refinement::Tube.

1 vtkm::filter::geometry_refinement::Tube tubeFilter;
2

3 tubeFilter.SetRadius(0.5f);
4 tubeFilter.SetNumberOfSides(7);
5 tubeFilter.SetCapping(true);
6

7 vtkm::cont::DataSet output = tubeFilter.Execute(inData);

10.9.7 Vertex Clustering

The vtkm::filter::geometry_refinement::VertexClustering filter simplifies a polygonal mesh. It does so
by dividing space into a uniform grid of bin and then merges together all points located in the same bin. The smaller the
dimensions of this binning grid, the fewer polygons will be in the output cells and the coarser the representation. This
surface simplification is an important operation to support level of detail (LOD) rendering in visualization applications.

class VertexClustering : public vtkm::filter::Filter
Reduce the number of triangles in a mesh.

VertexClustering is a filter to reduce the number of triangles in a triangle mesh, forming a good approximation
to the original geometry. The input must be a vtkm::cont::DataSet that contains only triangles.

The general approach of the algorithm is to cluster vertices in a uniform binning of space, accumulating to an
average point within each bin. In more detail, the algorithm first gets the bounds of the input poly data. It then
breaks this bounding volume into a user-specified number of spatial bins. It then reads each triangle from the
input and hashes its vertices into these bins. Then, if 2 or more vertices of the triangle fall in the same bin, the
triangle is dicarded. If the triangle is not discarded, it adds the triangle to the list of output triangles as a list
of vertex identifiers. (There is one vertex id per bin.) After all the triangles have been read, the representative
vertex for each bin is computed. This determines the spatial location of the vertices of each of the triangles in
the output.

To use this filter, specify the divisions defining the spatial subdivision in the x, y, and z directions. Compared to
algorithms such as vtkQuadricClustering, a significantly higher bin count is recommended as it doesn’t increase
the computation or memory of the algorithm and will produce significantly better results.

136 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetNumberOfDivisions(const vtkm::Id3 &num)
Specifies the dimensions of the uniform grid that establishes the bins used for clustering.

Setting smaller numbers of dimensions produces a smaller output, but with a coarser representation of the
surface.

inline const vtkm::Id3 &GetNumberOfDivisions() const
Specifies the dimensions of the uniform grid that establishes the bins used for clustering.

Setting smaller numbers of dimensions produces a smaller output, but with a coarser representation of the
surface.

Example 8: Using vtkm::filter::geometry_refinement::VertexClustering.

1 vtkm::filter::geometry_refinement::VertexClustering vertexClustering;
2

3 vertexClustering.SetNumberOfDivisions(vtkm::Id3(128, 128, 128));
4

5 vtkm::cont::DataSet simplifiedSurface = vertexClustering.Execute(originalSurface);

10.10 Mesh Information

VTK-m provides several filters that derive information about the structure of the geometry. This can be information
about the shape of cells or their connections.

10.10.1 Cell Size Measurements

The vtkm::filter::mesh_info::CellMeasures filter integrates the size of each cell in a mesh and reports the
size in a new cell field.

class CellMeasures : public vtkm::filter::Filter
Compute the size measure of each cell in a dataset.

CellMeasures is a filter that generates a new cell data array (i.e., one value specified per cell) holding the signed
measure of the cell or 0 (if measure is not well defined or the cell type is unsupported).

By default, the new cell-data array is named “measure”.

Public Functions

inline void SetMeasure(vtkm::filter::mesh_info::IntegrationType measure)
Specify the type of integrations to support.

This filter can support integrating the size of 1D elements (arclength measurements), 2D elements (area
measurements), and 3D elements (volume measurements). The measures to perform are specified with a
vtkm::filter::mesh_info::IntegrationType.

By default, the size measure for all types of elements is performed.

10.10. Mesh Information 137

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::filter::mesh_info::IntegrationType GetMeasure() const
Specify the type of integrations to support.

This filter can support integrating the size of 1D elements (arclength measurements), 2D elements (area
measurements), and 3D elements (volume measurements). The measures to perform are specified with a
vtkm::filter::mesh_info::IntegrationType.

By default, the size measure for all types of elements is performed.

inline void SetMeasureToArcLength()
Compute the length of 1D elements.

inline void SetMeasureToArea()
Compute the area of 2D elements.

inline void SetMeasureToVolume()
Compute the volume of 3D elements.

inline void SetMeasureToAll()
Compute the size of all types of elements.

inline void SetCellMeasureName(const std::string &name)
Specify the name of the field generated.

If not set, measure is used.

inline const std::string &GetCellMeasureName() const
Specify the name of the field generated.

If not set, measure is used.

By default, vtkm::filter::mesh_info::CellMeasures will compute the measures of all types of cells. It is some-
times desirable to limit the types of cells to measure to prevent the resulting field from mixing values of different units.
The appropriate measure to compute can be specified with the vtkm::filter::mesh_info::IntegrationType
enumeration.

enum class vtkm::filter::mesh_info::IntegrationType
Specifies over what types of mesh elements CellMeasures will operate.

The values of IntegrationType may be |-ed together to select multiple

Values:

enumerator None

enumerator ArcLength
Compute the length of 1D elements.

enumerator Area
Compute the area of 2D elements.

enumerator Volume
Compute the volume of 3D elements.

enumerator AllMeasures
Compute the size of all types of elements.

138 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.10.2 Ghost Cell Classification

The vtkm::filter::mesh_info::GhostCellClassify filter determines which cells should be considered ghost
cells in a structured data set. The ghost cells are expected to be on the border.

class GhostCellClassify : public vtkm::filter::Filter
Determines which cells should be considered ghost cells in a structured data set.

The ghost cells are expected to be on the border. The outer layer of cells are marked as ghost cells and the
remainder marked as normal.

This filter generates a new cell-centered field marking the status of each cell. Each entry is set to either
vtkm::CellClassification::Normal or vtkm::CellClassification::Ghost.

Public Functions

inline void SetGhostCellName(const std::string &fieldName)
Set the name of the output field name.

The output field is also marked as the ghost cell field in the output vtkm::cont::DataSet.

inline const std::string &GetGhostCellName()
Set the name of the output field name.

The output field is also marked as the ghost cell field in the output vtkm::cont::DataSet.

10.10.3 Mesh Quality Metrics

VTK-m provides several filters to compute metrics about the mesh quality. These filters produce a new cell field
that holds a given metric for the shape of the cell. The metrics for this filter come from the Verdict library, and
full mathematical descriptions for each metric can be found in the Verdict documentation (Sandia technical report
SAND2007-1751, https://coreform.com/papers/verdict_quality_library.pdf).

class MeshQualityArea : public vtkm::filter::Filter
Compute the area of each cell.

This only produces values for triangles and quadrilaterals.

Public Functions

vtkm::Float64 ComputeTotalArea(const vtkm::cont::DataSet &input)
Computes the area of all polygonal cells and returns the total area.

vtkm::Float64 ComputeAverageArea(const vtkm::cont::DataSet &input)
Computes the average area of cells.

This method first computes the total area of all cells and then divides that by the number of cells in the
dataset.

class MeshQualityAspectGamma : public vtkm::filter::Filter
For each cell, compute the normalized root-mean-square of the edge lengths.

This only produces values for tetrahedra.

10.10. Mesh Information 139

https://coreform.com/papers/verdict_quality_library.pdf

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The root-mean-square edge length is normalized to the volume such that the value is 1 for an equilateral tetrahe-
dron. The acceptable range for good quality meshes is considered to be [1, 3]. The normal range of values is [1,
FLOAT_MAX].

class MeshQualityAspectRatio : public vtkm::filter::Filter
Compute for each cell the ratio of its longest edge to its circumradius.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

An acceptable range of this mesh for a good quality polygon is [1, 1.3], and the acceptable range for a good
quality polyhedron is [1, 3]. Normal values for any cell type have the range [1, FLOAT_MAX].

class MeshQualityCondition : public vtkm::filter::Filter
Compute for each cell the condition number of the weighted Jacobian matrix.

This only produces values for triangles, quadrilaterals, and tetrahedra.

The acceptable range of values for a good quality cell is [1, 1.3] for triangles, [1, 4] for quadrilaterals, and [1, 3]
for tetrahedra.

class MeshQualityDiagonalRatio : public vtkm::filter::Filter
Compute for each cell the ratio of the maximum diagonal to the minimum diagonal.

This only produces values for quadrilaterals and hexahedra.

An acceptable range for a good quality cell is [0.65, 1]. The normal range is [0, 1], but a degenerate cell with no
size will have the value of infinity.

class MeshQualityDimension : public vtkm::filter::Filter
Compute for each cell a metric specifically designed for Sandia’s Pronto code.

This only produces values for hexahedra.

class MeshQualityJacobian : public vtkm::filter::Filter
Compute for each cell the minimum determinant of the Jacobian matrix, over corners and cell center.

This only produces values for quadrilaterals, tetrahedra, and hexahedra.

class MeshQualityMaxAngle : public vtkm::filter::Filter
Computes the maximum angle within each cell in degrees.

This only produces values for triangles and quadrilaterals.

For a good quality triangle, this value should be in the range [60, 90]. Poorer quality triangles can have a value
as high as 180. For a good quality quadrilateral, this value should be in the range [90, 135]. Poorer quality
quadrilaterals can have a value as high as 360.

class MeshQualityMaxDiagonal : public vtkm::filter::Filter
Computes the maximum diagonal length within each cell in degrees.

This only produces values for hexahedra.

class MeshQualityMinAngle : public vtkm::filter::Filter
Computes the minimum angle within each cell in degrees.

This only produces values for triangles and quadrilaterals.

140 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

For a good quality triangle, this value should be in the range [30, 60]. Poorer quality triangles can have a value as
low as 0. For a good quality quadrilateral, this value should be in the range [45, 90]. Poorer quality quadrilaterals
can have a value as low as 0.

class MeshQualityMinDiagonal : public vtkm::filter::Filter
Computes the minimal diagonal length within each cell in degrees.

This only produces values for hexahedra.

class MeshQualityOddy : public vtkm::filter::Filter
Compute for each cell the maximum deviation of a metric tensor from an identity matrix, over all corners and
cell center.

This only produces values for quadrilaterals and hexahedra.

For a good quality quadrilateral or hexahedron, this value should be in the range [0, 0.5]. Poorer quality cells
can have unboundedly larger values.

class MeshQualityRelativeSizeSquared : public vtkm::filter::Filter
Compute for each cell the ratio of area or volume to the mesh average.

If S is the size of a cell and avgS is the average cell size in the mesh, then let R = S/avgS. R is “normalized” to
be in the range [0, 1] by taking the minimum of R and 1/R. This value is then squared.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For a good quality triangle, the relative sized squared should be in the range [0.25, 1]. For a good quality
quadrilateral, it should be in the range [0.3, 1]. For a good quality tetrahedron, it should be in the range [0.3,
1]. For a good quality hexahedron, it should be in the range [0.5, 1]. Poorer quality cells can have a relative size
squared as low as 0.

class MeshQualityScaledJacobian : public vtkm::filter::Filter
Compute for each cell a metric derived from the Jacobian matric with normalization involving edge length.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For a triangle, an acceptable range for good quality is [0.5, 2*sqrt(3)/3]. The value for an equalateral triangle is
1. The normal range is [-2*sqrt(3)/3), 2*sqrt(3)/3], but malformed cells can have plus or minus the maximum
float value.

For a quadrilateral, an acceptable range for good quality is [0.3, 1]. The unit square has a value of 1. The normal
range as well as the full range is [-1, 1].

For a tetrahedron, an acceptable range for good quality is [0.5, sqrt(2)/2]. The value for a unit equalateral triangle
is 1. The normal range of values is [-sqrt(2)/2, sqrt(2)/2], but malformed cells can have plus or minus the
maximum float value.

For a hexahedron, an acceptable range for good quality is [0.5, 1]. The unit cube has a value of 1. The normal
range is [-1, 1], but malformed cells can have a maximum float value.

class MeshQualityShape : public vtkm::filter::Filter
Compute a shape-based metric for each cell.

This metric is based on the condition number of the Jacobian matrix.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For good quality triangles, the acceptable range is [0.25, 1]. Good quality quadrilaterals, tetrahedra, hexahedra
are in the range [0.3, 1]. Poorer quality cells can have values as low as 0.

10.10. Mesh Information 141

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class MeshQualityShapeAndSize : public vtkm::filter::Filter
Compute a metric for each cell based on the shape scaled by the cell size.

This filter multiplies the values of the shape metric by the relative size
squared metric. See vtkm::filter::mesh_info::MeshQualityShape and
vtkm::filter::mesh_info::MeshQualityRelativeSizeSquared for details on each of those met-
rics.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For a good quality cell, this value will be in the range [0.2, 1]. Poorer quality cells can have values as low as 0.

class MeshQualityShear : public vtkm::filter::Filter
Compute the shear of each cell.

The shear of a cell is computed by taking the minimum of the Jacobian at each corner divided by the length of
the corner’s adjacent edges.

This only produces values for quadrilaterals and hexahedra. Good quality cells will have values in the range [0.3,
1]. Poorer quality cells can have values as low as 0.

class MeshQualitySkew : public vtkm::filter::Filter
Compute the skew of each cell.

The skew is computed as the dot product between unit vectors in the principal directions. (For 3D objects, the
skew is taken as the maximum of all planes.)

This only produces values for quadrilaterals and hexahedra.

Good quality cells will have a skew in the range [0, 0.5]. A unit square or cube will have a skew of 0. Poor
quality cells can have a skew up to 1 although a malformed cell might have its skew be infinite.

class MeshQualityStretch : public vtkm::filter::Filter
Compute the stretch of each cell.

The stretch of a cell is computed as the ratio of the minimum edge length to the maximum diagonal, normalized
for the unit cube. A good quality cell will have a stretch in the range [0.25, 1]. Poorer quality cells can have a
stretch as low as 0 although a malformed cell might return a strech of infinity.

This only produces values for quadrilaterals and hexahedra.

class MeshQualityTaper : public vtkm::filter::Filter
Compute the taper of each cell.

The taper of a quadrilateral is computed as the maximum ratio of the cross-derivative with its shortest associated
principal axis.

This only produces values for quadrilaterals and hexahedra.

A good quality quadrilateral will have a taper in the range of [0, 0.7]. A good quality hexahedron will have a
taper in the range of [0, 0.5]. The unit square or cube will have a taper of 0. Poorer quality cells will have larger
values (with no upper limit).

class MeshQualityVolume : public vtkm::filter::Filter
Compute the volume each cell.

This only produces values for tetrahedra, pyramids, wedges, and hexahedra.

142 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

vtkm::Float64 ComputeTotalVolume(const vtkm::cont::DataSet &input)
Computes the volume of all polyhedral cells and returns the total area.

vtkm::Float64 ComputeAverageVolume(const vtkm::cont::DataSet &input)
Computes the average volume of cells.

This method first computes the total volume of all cells and then divides that by the number of cells in the
dataset.

class MeshQualityWarpage : public vtkm::filter::Filter
Compute the flatness of cells.

This only produces values for quadrilaterals. It is defined as the cosine of the minimum dihedral angle formed
by the planes intersecting in diagonals (to the fourth power).

This metric will be 1 for a perfectly flat quadrilateral and be lower as the quadrilateral deviates from the plane. A
good quality quadrilateral will have a value in the range [0.3, 1]. Poorer quality cells having lower values down
to -1, although malformed cells might have an infinite value.

Note that the value of this filter is consistent with the equivalent metric in VisIt, and it differs from the imple-
mentation in the Verdict library. The Verdict library returns 1 - value.

The vtkm::filter::mesh_info::MeshQuality filter consolidates all of these metrics into a single filter. The
metric to compute is selected with the vtkm::filter::mesh_info::MeshQuality::SetMetric().

class MeshQuality : public vtkm::filter::Filter
Computes the quality of an unstructured cell-based mesh.

The quality is defined in terms of the summary statistics (frequency, mean, variance, min, max) of metrics
computed over the mesh cells. One of several different metrics can be specified for a given cell type, and the
mesh can consist of one or more different cell types. The resulting mesh quality is stored as one or more new
fields in the output dataset of this filter, with a separate field for each cell type. Each field contains the metric
summary statistics for the cell type. Summary statists with all 0 values imply that the specified metric does not
support the cell type.

Public Functions

void SetMetric(CellMetric metric)
Specify the metric to compute on the mesh.

inline CellMetric GetMetric() const
Specify the metric to compute on the mesh.

std::string GetMetricName() const
Return a string describing the metric selected.

The metric to compute is identified using the vtkm::filter::mesh_info::CellMetric enum.

enum class vtkm::filter::mesh_info::CellMetric
Values:

10.10. Mesh Information 143

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator Area
Compute the area of each cell.

This only produces values for triangles and quadrilaterals.

enumerator AspectGamma
For each cell, compute the normalized root-mean-square of the edge lengths.

This only produces values for tetrahedra.

The root-mean-square edge length is normalized to the volume such that the value is 1 for an equilateral
tetrahedron. The acceptable range for good quality meshes is considered to be [1, 3]. The normal range of
values is [1, FLOAT_MAX].

enumerator AspectRatio
Compute for each cell the ratio of its longest edge to its circumradius.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

An acceptable range of this mesh for a good quality polygon is [1, 1.3], and the acceptable range for a good
quality polyhedron is [1, 3]. Normal values for any cell type have the range [1, FLOAT_MAX].

enumerator Condition
Compute for each cell the condition number of the weighted Jacobian matrix.

This only produces values for triangles, quadrilaterals, and tetrahedra.

The acceptable range of values for a good quality cell is [1, 1.3] for triangles, [1, 4] for quadrilaterals, and
[1, 3] for tetrahedra.

enumerator DiagonalRatio
Compute for each cell the ratio of the maximum diagonal to the minimum diagonal.

This only produces values for quadrilaterals and hexahedra.

An acceptable range for a good quality cell is [0.65, 1]. The normal range is [0, 1], but a degenerate cell
with no size will have the value of infinity.

enumerator Dimension
Compute for each cell a metric specifically designed for Sandia’s Pronto code.

This only produces values for hexahedra.

enumerator Jacobian
Compute for each cell the minimum determinant of the Jacobian matrix, over corners and cell center.

This only produces values for quadrilaterals, tetrahedra, and hexahedra.

enumerator MaxAngle
Computes the maximum angle within each cell in degrees.

This only produces values for triangles and quadrilaterals.

For a good quality triangle, this value should be in the range [60, 90]. Poorer quality triangles can have a
value as high as 180. For a good quality quadrilateral, this value should be in the range [90, 135]. Poorer
quality quadrilaterals can have a value as high as 360.

144 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator MaxDiagonal
Computes the maximum diagonal length within each cell in degrees.

This only produces values for hexahedra.

enumerator MinAngle
Computes the minimum angle within each cell in degrees.

This only produces values for triangles and quadrilaterals.

For a good quality triangle, this value should be in the range [30, 60]. Poorer quality triangles can have a
value as low as 0. For a good quality quadrilateral, this value should be in the range [45, 90]. Poorer quality
quadrilaterals can have a value as low as 0.

enumerator MinDiagonal
Computes the minimal diagonal length within each cell in degrees.

This only produces values for hexahedra.

enumerator Oddy
Compute for each cell the maximum deviation of a metric tensor from an identity matrix, over all corners
and cell center.

This only produces values for quadrilaterals and hexahedra.

For a good quality quadrilateral or hexahedron, this value should be in the range [0, 0.5]. Poorer quality
cells can have unboundedly larger values.

enumerator RelativeSizeSquared
Compute for each cell the ratio of area or volume to the mesh average.

If S is the size of a cell and avgS is the average cell size in the mesh, then let R = S/avgS. R is “normalized”
to be in the range [0, 1] by taking the minimum of R and 1/R. This value is then squared.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For a good quality triangle, the relative sized squared should be in the range [0.25, 1]. For a good quality
quadrilateral, it should be in the range [0.3, 1]. For a good quality tetrahedron, it should be in the range
[0.3, 1]. For a good quality hexahedron, it should be in the range [0.5, 1]. Poorer quality cells can have a
relative size squared as low as 0.

enumerator ScaledJacobian
Compute for each cell a metric derived from the Jacobian matric with normalization involving edge length.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For a triangle, an acceptable range for good quality is [0.5, 2*sqrt(3)/3]. The value for an equalateral
triangle is 1. The normal range is [-2*sqrt(3)/3), 2*sqrt(3)/3], but malformed cells can have plus or minus
the maximum float value.

For a quadrilateral, an acceptable range for good quality is [0.3, 1]. The unit square has a value of 1. The
normal range as well as the full range is [-1, 1].

For a tetrahedron, an acceptable range for good quality is [0.5, sqrt(2)/2]. The value for a unit equalateral
triangle is 1. The normal range of values is [-sqrt(2)/2, sqrt(2)/2], but malformed cells can have plus or
minus the maximum float value.

10.10. Mesh Information 145

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

For a hexahedron, an acceptable range for good quality is [0.5, 1]. The unit cube has a value of 1. The
normal range is [-1, 1], but malformed cells can have a maximum float value.

enumerator Shape
Compute a shape-based metric for each cell.

This metric is based on the condition number of the Jacobian matrix.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For good quality triangles, the acceptable range is [0.25, 1]. Good quality quadrilaterals, tetrahedra, hexa-
hedra are in the range [0.3, 1]. Poorer quality cells can have values as low as 0.

enumerator ShapeAndSize
Compute a metric for each cell based on the shape scaled by the cell size.

This filter multiplies the values of the shape metric by the relative size
squared metric. See vtkm::filter::mesh_info::MeshQualityShape and
vtkm::filter::mesh_info::MeshQualityRelativeSizeSquared for details on each of those
metrics.

This only produces values for triangles, quadrilaterals, tetrahedra, and hexahedra.

For a good quality cell, this value will be in the range [0.2, 1]. Poorer quality cells can have values as low
as 0.

enumerator Shear
Compute the shear of each cell.

The shear of a cell is computed by taking the minimum of the Jacobian at each corner divided by the length
of the corner’s adjacent edges.

This only produces values for quadrilaterals and hexahedra. Good quality cells will have values in the range
[0.3, 1]. Poorer quality cells can have values as low as 0.

enumerator Skew
Compute the skew of each cell.

The skew is computed as the dot product between unit vectors in the principal directions. (For 3D objects,
the skew is taken as the maximum of all planes.)

This only produces values for quadrilaterals and hexahedra.

Good quality cells will have a skew in the range [0, 0.5]. A unit square or cube will have a skew of 0. Poor
quality cells can have a skew up to 1 although a malformed cell might have its skew be infinite.

enumerator Stretch
Compute the stretch of each cell.

The stretch of a cell is computed as the ratio of the minimum edge length to the maximum diagonal, nor-
malized for the unit cube. A good quality cell will have a stretch in the range [0.25, 1]. Poorer quality cells
can have a stretch as low as 0 although a malformed cell might return a strech of infinity.

This only produces values for quadrilaterals and hexahedra.

enumerator Taper

146 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Compute the taper of each cell.

The taper of a quadrilateral is computed as the maximum ratio of the cross-derivative with its shortest
associated principal axis.

This only produces values for quadrilaterals and hexahedra.

A good quality quadrilateral will have a taper in the range of [0, 0.7]. A good quality hexahedron will have
a taper in the range of [0, 0.5]. The unit square or cube will have a taper of 0. Poorer quality cells will have
larger values (with no upper limit).

enumerator Volume
Compute the volume each cell.

This only produces values for tetrahedra, pyramids, wedges, and hexahedra.

enumerator Warpage
Compute the flatness of cells.

This only produces values for quadrilaterals. It is defined as the cosine of the minimum dihedral angle
formed by the planes intersecting in diagonals (to the fourth power).

This metric will be 1 for a perfectly flat quadrilateral and be lower as the quadrilateral deviates from the
plane. A good quality quadrilateral will have a value in the range [0.3, 1]. Poorer quality cells having lower
values down to -1, although malformed cells might have an infinite value.

Note that the value of this filter is consistent with the equivalent metric in VisIt, and it differs from the
implementation in the Verdict library. The Verdict library returns 1 - value.

enumerator None

10.11 Multi-Block

Data with multiple blocks are stored in vtkm::cont::PartitionedDataSet objects. Most VTK-m filters operate
correctly on vtkm::cont::PartitionedDataSet just like they do with vtkm::cont::DataSet. However, there
are some filters that are designed with operations specific to multi-block datasets.

10.11.1 AMR Arrays

An AMR mesh is a vtkm::cont::PartitionedDataSet with a special structure in the partitions. Each partition
has a vtkm::cont::CellSetStructured cell set. The partitions form a hierarchy of grids where each level of the
hierarchy refines the one above.

vtkm::cont::PartitionedDataSet does not explicitly store the structure of an AMR grid. The
vtkm::filter::multi_block::AmrArrays filter determines the hierarchical structure of the AMR partitions and
stores information about them in cell field arrays on each partition.

class AmrArrays : public vtkm::filter::Filter
Generate arrays describing the AMR structure in a partitioned data set.

AMR grids are represented by vtkm::cont::PartitionedDataSet, but this class does not explicitly store
the hierarchical structure of the mesh refinement. This hierarchical arrangement needs to be captured in fields

10.11. Multi-Block 147

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

that describe where blocks reside in the hierarchy. This filter analyses the arrangement of partitions in a
vtkm::cont::PartitionedDataSet and generates the following field arrays.

• vtkAmrLevel The AMR level at which the partition resides (with 0 being the most coarse level). All the
values for a particular partition are set to the same value.

• vtkAmrIndex A unique identifier for each partition of a particular level. Each partition of the same level
will have a unique index, but the indices will repeat across levels. All the values for a particular partition
are set to the same value.

• vtkCompositeIndexA unique identifier for each partition. This index is the same as the index used for the
partition in the containing vtkm::cont::PartitionedDataSet. All the values for a particular partition
are set to the same value.

• vtkGhostType It is common for refinement levels in an AMR structure to overlap more coarse grids. In
this case, the overlapped coarse cells have invalid data. The vtkGhostType field will track which cells are
overlapped and should be ignored. This array will have a 0 value for all valid cells and a non-zero value
for all invalid cells. (Specifically, if the bit specified by vtkm::CellClassification::BLANKED is set,
then the cell is overlapped with a cell in a finer level.)

These arrays are stored as cell fields in the partitions.

This filter only operates on partitioned data sets where all the partitions have cell sets of type
vtkm::cont::CellSetStructured . This is characteristic of AMR data sets.

Did You Know?

The names of the generated field arrays arrays (e.g. vtkAmrLevel) are chosen to be compatible with the equivalent
arrays in VTK. This is why they use the prefix of “vtk” instead of “vtkm”. Likewise, the flags used for vtkGhostType
are compatible with VTK.

10.11.2 Merge Data Sets

A vtkm::cont::PartitionedDataSet can often be treated the same as a vtkm::cont::DataSet as both can
be passed to a filter’s Execute method. However, it is sometimes important to have all the data contained in a sin-
gle DataSet. The vtkm::filter::multi_block::MergeDataSets filter can do just that to the partitions of a
vtkm::cont::PartitionedDataSet.

class MergeDataSets : public vtkm::filter::Filter
Merging multiple data sets into one data set.

This filter merges multiple data sets into one data set. We assume that the input data sets have the same coordinate
system. If there are missing fields in a specific data set, the filter uses the InvalidValue specified by the user to
fill in the associated position of the field array.

MergeDataSets is used by passing a vtkm::cont::PartitionedDataSet to its Execute() method. The
Execute() will return a vtkm::cont::PartitionedDataSet because that is the common interface for all
filters. However, the vtkm::cont::PartitionedDataSet will have one partition that is all the blocks merged
together.

148 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetInvalidValue(vtkm::Float64 invalidValue)
Specify the value to use where field values are missing.

One issue when merging blocks in a paritioned dataset is that the blocks/partitions may have different fields.
That is, one partition might not have all the fields of another partition. When these partitions are merged
together, the values for this missing field must be set to something. They will be set to this value, which
defaults to NaN.

inline vtkm::Float64 GetInvalidValue()
Specify the value to use where field values are missing.

One issue when merging blocks in a paritioned dataset is that the blocks/partitions may have different fields.
That is, one partition might not have all the fields of another partition. When these partitions are merged
together, the values for this missing field must be set to something. They will be set to this value, which
defaults to NaN.

10.12 Resampling

All data in vtkm::cont::DataSet objects are discrete representations. It is sometimes necessary to resample this
data in different ways.

10.12.1 Histogram Sampling

The vtkm::filter::resampling::HistSampling filter randomly samples the points of an input data set. The
sampling is random but adaptive to preserve rare field value points.

class HistSampling : public vtkm::filter::Filter
Adaptively sample points to preserve tail features.

This filter randomly samples the points of a vtkm::cont::DataSet and generates a new
vtkm::cont::DataSet with a subsampling of the points. The sampling is adaptively selected to pre-
serve tail and outlying features of the active field. That is, the more rare a field value is, the more likely the point
will be selected in the sampling. This is done by creating a histogram of the field and using that to derive the
importance level of each field value. Details of the algorithm can be found in the paper “In Situ Data-Driven
Adaptive Sampling

for Large-scale Simulation Data Summarization” by Biswas, Dutta, Pulido, and Ahrens as published in In Situ
Infrastructures for Enabling Extreme-scale Analysis and Visualization (ISAV 2018).

The cell set of the input data is removed and replaced with a set with a vertex cell for each point. This effectively
converts the data to a point cloud.

10.12. Resampling 149

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetNumberOfBins(vtkm::Id numberOfBins)
Specify the number of bins used when computing the histogram.

The histogram is used to select the importance of each field value. More rare field values are more likely
to be selected.

inline vtkm::Id GetNumberOfBins()
Specify the number of bins used when computing the histogram.

The histogram is used to select the importance of each field value. More rare field values are more likely
to be selected.

inline void SetSampleFraction(vtkm::FloatDefault fraction)
Specify the fraction of points to create in the sampled data.

A fraction of 1 means that all the points will be sampled and be in the output. A fraction of 0 means that
none of the points will be sampled. A fraction of 0.5 means that half the points will be selected to be in the
output.

inline vtkm::FloatDefault GetSampleFraction() const
Specify the fraction of points to create in the sampled data.

A fraction of 1 means that all the points will be sampled and be in the output. A fraction of 0 means that
none of the points will be sampled. A fraction of 0.5 means that half the points will be selected to be in the
output.

inline void SetSeed(vtkm::UInt32 seed)
Specify the seed used for random number generation.

The random numbers are used to select which points to pull from the input. If the same seed is used for
multiple invocations, the results will be the same.

inline vtkm::UInt32 GetSeed()
Specify the seed used for random number generation.

The random numbers are used to select which points to pull from the input. If the same seed is used for
multiple invocations, the results will be the same.

10.12.2 Probe

The vtkm::filter::resampling::Probe filter maps the fields of one vtkm::cont::DataSet onto another. This
is useful for redefining meshes as well as comparing field data from two data sets with different geometries.

class Probe : public vtkm::filter::Filter
Sample the fields of a data set at specified locations.

The vtkm::filter::resampling::Probe filter samples the fields of one vtkm::cont::DataSet and places
them in the fields of another vtkm::cont::DataSet.

To use this filter, first specify a geometry to probe with with SetGeometry(). The most important feature of
this geometry is its coordinate system. When you call Execute(), the output will be the data specified with
SetGeometry() but will have the fields of the input to Execute() transferred to it. The fields are transfered by
probing the input data set at the point locations of the geometry.

150 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetGeometry(const vtkm::cont::DataSet &geometry)
Specify the geometry to probe with.

When Execute() is called, the input data will be probed at all the point locations of this geometry as
specified by its coordinate system.

inline const vtkm::cont::DataSet &GetGeometry() const
Specify the geometry to probe with.

When Execute() is called, the input data will be probed at all the point locations of this geometry as
specified by its coordinate system.

inline void SetInvalidValue(vtkm::Float64 invalidValue)
Specify the value to use for points outside the bounds of the input.

It is possible that the sampling geometry will have points outside the bounds of the input. When this
happens, the field will be set to this “invalid” value. By default, the invalid value is NaN.

inline vtkm::Float64 GetInvalidValue() const
Specify the value to use for points outside the bounds of the input.

It is possible that the sampling geometry will have points outside the bounds of the input. When this
happens, the field will be set to this “invalid” value. By default, the invalid value is NaN.

10.13 Vector Analysis

VTK-m’s vector analysis filters compute operations on fields related to vectors (usually in 3-space).

10.13.1 Cross Product

The vtkm::filter::vector_analysis::CrossProduct filter computes the cross product of two vector fields for
every element in the input data set. The cross product filter computes (PrimaryField × SecondaryField). The cross
product computation works for either point or cell centered vector fields.

class CrossProduct : public vtkm::filter::Filter
Compute the cross product of 3D vector fields.

The left part of the operand is the “primary” field and the right part of the operand is the “secondary” field.

Public Functions

inline void SetPrimaryField(const std::string &name, vtkm::cont::Field::Association association =
vtkm::cont::Field::Association::Any)

Specify the primary field to operate on.

In the cross product operation A x B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

10.13. Vector Analysis 151

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline const std::string &GetPrimaryFieldName() const
Specify the primary field to operate on.

In the cross product operation A x B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline vtkm::cont::Field::Association GetPrimaryFieldAssociation() const
Specify the primary field to operate on.

In the cross product operation A x B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline void SetUseCoordinateSystemAsPrimaryField(bool flag)
Specify the primary field to operate on.

In the cross product operation A x B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline bool GetUseCoordinateSystemAsPrimaryField() const
Specify the primary field to operate on.

In the cross product operation A x B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline void SetPrimaryCoordinateSystem(vtkm::Id index)
Specify the primary field to operate on.

In the cross product operation A x B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline void SetSecondaryField(const std::string &name, vtkm::cont::Field::Association association =
vtkm::cont::Field::Association::Any)

Specify the secondary field to operate on.

In the cross product operation A x B, B is the secondary field.

The secondary field is an alias for the active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline const std::string &GetSecondaryFieldName() const
Specify the secondary field to operate on.

In the cross product operation A x B, B is the secondary field.

The secondary field is an alias for the active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline vtkm::cont::Field::Association GetSecondaryFieldAssociation() const
Specify the secondary field to operate on.

In the cross product operation A x B, B is the secondary field.

The secondary field is an alias for the active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

152 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetUseCoordinateSystemAsSecondaryField(bool flag)
Specify the secondary field to operate on.

In the cross product operation A x B, B is the secondary field.

The secondary field is an alias for the active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline bool GetUseCoordinateSystemAsSecondaryField() const
Specify the secondary field to operate on.

In the cross product operation A x B, B is the secondary field.

The secondary field is an alias for the active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline void SetSecondaryCoordinateSystem(vtkm::Id index)
Specify the secondary field to operate on.

In the cross product operation A x B, B is the secondary field.

The secondary field is an alias for the active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline vtkm::Id GetSecondaryCoordinateSystemIndex() const
Specify the secondary field to operate on.

In the cross product operation A x B, B is the secondary field.

The secondary field is an alias for the active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

10.13.2 Dot Product

The vtkm::filter::vector_analysis::DotProduct filter computes the dot product of two vector fields for every
element in the input data set. The dot product filter computes (PrimaryField . SecondaryField). The dot product
computation works for either point or cell centered vector fields.

class DotProduct : public vtkm::filter::Filter
Compute the dot product of vector fields.

The left part of the operand is the “primary” field and the right part of the operand is the “secondary” field
(although the dot product is commutative, so the order of primary and secondary seldom matters).

The dot product can operate on vectors of any length.

Public Functions

inline void SetPrimaryField(const std::string &name, vtkm::cont::Field::Association association =
vtkm::cont::Field::Association::Any)

Specify the primary field to operate on.

In the dot product operation A . B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

10.13. Vector Analysis 153

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline const std::string &GetPrimaryFieldName() const
Specify the primary field to operate on.

In the dot product operation A . B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline vtkm::cont::Field::Association GetPrimaryFieldAssociation() const
Specify the primary field to operate on.

In the dot product operation A . B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline void SetUseCoordinateSystemAsPrimaryField(bool flag)
Specify the primary field to operate on.

In the dot product operation A . B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline bool GetUseCoordinateSystemAsPrimaryField() const
Specify the primary field to operate on.

In the dot product operation A . B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline void SetPrimaryCoordinateSystem(vtkm::Id coord_idx)
Specify the primary field to operate on.

In the dot product operation A . B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline vtkm::Id GetPrimaryCoordinateSystemIndex() const
Specify the primary field to operate on.

In the dot product operation A . B, A is the primary field.

The primary field is an alias for active field index 0. As with any active field, it can be set as a named field
or as a coordinate system.

inline void SetSecondaryField(const std::string &name, vtkm::cont::Field::Association association =
vtkm::cont::Field::Association::Any)

Specify the secondary field to operate on.

In the dot product operation A . B, B is the secondary field.

The secondary field is an alias for active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline const std::string &GetSecondaryFieldName() const
Specify the secondary field to operate on.

In the dot product operation A . B, B is the secondary field.

The secondary field is an alias for active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

154 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::cont::Field::Association GetSecondaryFieldAssociation() const
Specify the secondary field to operate on.

In the dot product operation A . B, B is the secondary field.

The secondary field is an alias for active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline void SetUseCoordinateSystemAsSecondaryField(bool flag)
Specify the secondary field to operate on.

In the dot product operation A . B, B is the secondary field.

The secondary field is an alias for active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline bool GetUseCoordinateSystemAsSecondaryField() const
Specify the secondary field to operate on.

In the dot product operation A . B, B is the secondary field.

The secondary field is an alias for active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline void SetSecondaryCoordinateSystem(vtkm::Id index)
Specify the secondary field to operate on.

In the dot product operation A . B, B is the secondary field.

The secondary field is an alias for active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

inline vtkm::Id GetSecondaryCoordinateSystemIndex() const
Specify the secondary field to operate on.

In the dot product operation A . B, B is the secondary field.

The secondary field is an alias for active field index 1. As with any active field, it can be set as a named
field or as a coordinate system.

10.13.3 Gradients

The vtkm::filter::vector_analysis::Gradient filter estimates the gradient of a point based in-
put field for every element in the input data set. The gradient computation can either generate cell
center based gradients, which are fast but less accurate, or more accurate but slower point based gra-
dients. The default for the filter is output as cell centered gradients, but can be changed by using
the vtkm::filter::vector_analysis::Gradient::SetComputePointGradient() method. The
default name for the output fields is “Gradients”, but that can be overridden as always using the
vtkm::filter::vector_analysis::Gradient::SetOutputFieldName() method.

class Gradient : public vtkm::filter::Filter
A general filter for gradient estimation.

Estimates the gradient of a point field in a data set. The created gradient array can be determined at either each
point location or at the center of each cell.

The default for the filter is output as cell centered gradients. To enable point based gradient computation enable
SetComputePointGradient()

If no explicit name for the output field is provided the filter will default to “Gradients”

10.13. Vector Analysis 155

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetComputePointGradient(bool enable)
Specify whether to compute gradients.

When this flag is on (default is off), the gradient filter will provide a point based gradients, which are
significantly more costly since for each point we need to compute the gradient of each cell that uses it.

inline bool GetComputePointGradient() const
Specify whether to compute gradients.

When this flag is on (default is off), the gradient filter will provide a point based gradients, which are
significantly more costly since for each point we need to compute the gradient of each cell that uses it.

inline void SetComputeDivergence(bool enable)
Add divergence field to the output data.

The input array must have 3 components to compute this. The default is off.

inline bool GetComputeDivergence() const
Add divergence field to the output data.

The input array must have 3 components to compute this. The default is off.

inline void SetDivergenceName(const std::string &name)
When SetComputeDivergence() is enabled, the result is stored in a field of this name.

If not specified, the name of the field will be Divergence.

inline const std::string &GetDivergenceName() const
When SetComputeDivergence() is enabled, the result is stored in a field of this name.

If not specified, the name of the field will be Divergence.

inline void SetComputeVorticity(bool enable)
Add voriticity/curl field to the output data.

The input array must have 3 components to compute this. The default is off.

inline bool GetComputeVorticity() const
Add voriticity/curl field to the output data.

The input array must have 3 components to compute this. The default is off.

inline void SetVorticityName(const std::string &name)
When SetComputeVorticity() is enabled, the result is stored in a field of this name.

If not specified, the name of the field will be Vorticity.

inline const std::string &GetVorticityName() const
When SetComputeVorticity() is enabled, the result is stored in a field of this name.

If not specified, the name of the field will be Vorticity.

inline void SetComputeQCriterion(bool enable)
Add Q-criterion field to the output data.

The input array must have 3 components to compute this. The default is off.

156 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline bool GetComputeQCriterion() const
Add Q-criterion field to the output data.

The input array must have 3 components to compute this. The default is off.

inline void SetQCriterionName(const std::string &name)
When SetComputeQCriterion() is enabled, the result is stored in a field of this name.

If not specified, the name of the field will be QCriterion.

inline const std::string &GetQCriterionName() const
When SetComputeQCriterion() is enabled, the result is stored in a field of this name.

If not specified, the name of the field will be QCriterion.

inline void SetComputeGradient(bool enable)
Add gradient field to the output data.

The name of the array will be Gradients unless otherwise specified with SetOutputFieldName and will
be a cell field unless ComputePointGradient() is enabled. It is useful to turn this off when you are only
interested in the results of Divergence, Vorticity, or QCriterion. The default is on.

inline bool GetComputeGradient() const
Add gradient field to the output data.

The name of the array will be Gradients unless otherwise specified with SetOutputFieldName and will
be a cell field unless ComputePointGradient() is enabled. It is useful to turn this off when you are only
interested in the results of Divergence, Vorticity, or QCriterion. The default is on.

inline void SetColumnMajorOrdering()
Make the vector gradient output format be in FORTRAN Column-major order.

This is only used when the input field is a vector field. Enabling column-major is important if integrating
with other projects such as VTK. Default: Row Order.

inline void SetRowMajorOrdering()
Make the vector gradient output format be in C Row-major order.

This is only used when the input field is a vector field. Default: Row Order.

10.13.4 Surface Normals

The vtkm::filter::vector_analysis::SurfaceNormals filter computes the surface normals of a polygonal data
set at its points and/or cells. The filter takes a data set as input and by default, uses the active coordinate system to
compute the normals.

class SurfaceNormals : public vtkm::filter::Filter
Computes normals for polygonal mesh.

This filter computes surface normals on points and/or cells of a polygonal dataset. The cell normals are faceted
and are computed based on the plane where a face lies. The point normals are smooth normals, computed by
averaging the face normals of incident cells. The normals will be consistently oriented to point in the direction
of the same connected surface if possible.

The point and cell normals may be oriented to a point outside of the manifold surface by turning on the auto
orient normals option (SetAutoOrientNormals()), or they may point inward by also setting flip normals
(SetFlipNormals()) to true.

10.13. Vector Analysis 157

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Triangle vertices will be reordered to be wound counter-clockwise around the cell normals when the consistency
option (SetConsistency()) is enabled.

For non-polygonal cells, a zeroed vector is assigned. The point normals are computed by averaging the cell
normals of the incident cells of each point.

The default name for the output fields is Normals, but that can be overridden using the SetCellNormalsName()
and SetPointNormalsName() methods. The filter will also respect the name in SetOutputFieldName() if
neither of the others are set.

Public Functions

SurfaceNormals()

Create SurfaceNormals filter.

This calls this->SetUseCoordinateSystemAsField(true) since that is the most common use-case for surface
normals.

inline void SetGenerateCellNormals(bool value)
Specify whether cell normals should be generated.

Default is off.

inline bool GetGenerateCellNormals() const
Specify whether cell normals should be generated.

Default is off.

inline void SetNormalizeCellNormals(bool value)
Specify whether the cell normals should be normalized.

Default value is true. The intended use case of this flag is for faster, approximate point normals generation
by skipping the normalization of the face normals. Note that when set to false, the result cell normals will
not be unit length normals and the point normals will be different.

inline bool GetNormalizeCellNormals() const
Specify whether the cell normals should be normalized.

Default value is true. The intended use case of this flag is for faster, approximate point normals generation
by skipping the normalization of the face normals. Note that when set to false, the result cell normals will
not be unit length normals and the point normals will be different.

inline void SetGeneratePointNormals(bool value)
Specify whether the point normals should be generated.

Default is on.

inline bool GetGeneratePointNormals() const
Specify whether the point normals should be generated.

Default is on.

inline void SetCellNormalsName(const std::string &name)
Specify the name of the cell normals field.

Default is Normals.

inline const std::string &GetCellNormalsName() const
Specify the name of the cell normals field.

Default is Normals.

158 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetPointNormalsName(const std::string &name)
Specify the name of the point normals field.

Default is Normals.

inline const std::string &GetPointNormalsName() const
Specify the name of the point normals field.

Default is Normals.

inline void SetAutoOrientNormals(bool v)
Specify whether to orient the normals outwards from the surface.

This requires a closed manifold surface or the behavior is undefined. This option is expensive but might be
necessary for rendering. To make the normals point inward, set FlipNormals to true. Default is off.

inline bool GetAutoOrientNormals() const
Specify whether to orient the normals outwards from the surface.

This requires a closed manifold surface or the behavior is undefined. This option is expensive but might be
necessary for rendering. To make the normals point inward, set FlipNormals to true. Default is off.

inline void SetFlipNormals(bool v)
Specify the direction to point normals when SetAutoOrientNormals() is true.

When this flag is false (the default), the normals will be oriented to point outward. When the flag is true,
the normals will point inward. This option has no effect if auto orient normals is off.

inline bool GetFlipNormals() const
Specify the direction to point normals when SetAutoOrientNormals() is true.

When this flag is false (the default), the normals will be oriented to point outward. When the flag is true,
the normals will point inward. This option has no effect if auto orient normals is off.

inline void SetConsistency(bool v)
Specify whtehr polygon winding should be made consistent with normal orientation.

Triangles are wound such that their points are counter-clockwise around the generated cell normal. Default
is true. This currently only affects triangles. This is only applied when cell normals are generated.

inline bool GetConsistency() const
Specify whtehr polygon winding should be made consistent with normal orientation.

Triangles are wound such that their points are counter-clockwise around the generated cell normal. Default
is true. This currently only affects triangles. This is only applied when cell normals are generated.

10.13.5 Vector Magnitude

The vtkm::filter::vector_analysis::VectorMagnitude filter takes a field comprising vec-
tors and computes the magnitude for each vector. The vector field is selected as usual with the
vtkm::filter::vector_analysis::VectorMagnitude::SetActiveField() method. The de-
fault name for the output field is magnitude, but that can be overridden as always using the
vtkm::filter::vector_analysis::VectorMagnitude::SetOutputFieldName() method.

class VectorMagnitude : public vtkm::filter::Filter
Compute the magnitudes of a vector field.

The vector field is selected with the SetActiveField() method. The default name for the output field is
magnitude, but that can be overridden using the SetOutputFieldName() method.

10.13. Vector Analysis 159

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

10.14 ZFP Compression

vtkm::filter::zfp::ZFPCompressor1D , vtkm::filter::zfp::ZFPCompressor2D , and
vtkm::filter::zfp::ZFPCompressor3D are a set of filters that take a 1D, 2D, and 3D field, respectively, and
compresses the values using the compression algorithm ZFP.

The field is selected as usual with the vtkm::filter::zfp::ZFPCompressor3D::SetActiveField()
method. The rate of compression is set using vtkm::filter::zfp::ZFPCompressor3D::SetRate(). The
default name for the output field is compressed.

class ZFPCompressor1D : public vtkm::filter::Filter
Compress a scalar field using ZFP.

Takes as input a 1D array and generates an output of compressed data.

Warning: This filter currently only supports 1D structured cell sets.

Public Functions

inline void SetRate(vtkm::Float64 _rate)
Specifies the rate of compression.

inline vtkm::Float64 GetRate()
Specifies the rate of compression.

class ZFPCompressor2D : public vtkm::filter::Filter
Compress a scalar field using ZFP.

Takes as input a 2D array and generates an output of compressed data.

Warning: This filter is currently only supports 2D structured cell sets.

Public Functions

inline void SetRate(vtkm::Float64 _rate)
Specifies the rate of compression.

inline vtkm::Float64 GetRate()
Specifies the rate of compression.

class ZFPCompressor3D : public vtkm::filter::Filter
Compress a scalar field using ZFP.

Takes as input a 3D array and generates an output of compressed data.

Warning: This filter is currently only supports 3D structured cell sets.

160 Chapter 10. Provided Filters

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline void SetRate(vtkm::Float64 _rate)
Specifies the rate of compression.

inline vtkm::Float64 GetRate()
Specifies the rate of compression.

vtkm::filter::zfp::ZFPDecompressor1D , vtkm::filter::zfp::ZFPDecompressor2D , and
vtkm::filter::zfp::ZFPDecompressor3D are a set of filters that take a compressed 1D, 2D, and 3D field,
respectively, and decompress the values using the compression algorithm ZFP.

The field is selected as usual with the vtkm::filter::zfp::ZFPDecompressor3D::SetActiveField()
method. The rate of compression is set using vtkm::filter::zfp::ZFPDecompressor3D::SetRate(). The
default name for the output field is decompressed.

class ZFPDecompressor1D : public vtkm::filter::Filter
Decompress a scalar field using ZFP.

Takes as input a 1D compressed array and generates the decompressed version of the data.

Warning: This filter is currently only supports 1D structured cell sets.

Public Functions

inline void SetRate(vtkm::Float64 _rate)
Specifies the rate of compression.

inline vtkm::Float64 GetRate()
Specifies the rate of compression.

class ZFPDecompressor2D : public vtkm::filter::Filter
Decompress a scalar field using ZFP.

Takes as input a 2D compressed array and generates the decompressed version of the data.

Warning: This filter is currently only supports 2D structured cell sets.

Public Functions

inline void SetRate(vtkm::Float64 _rate)
Specifies the rate of compression.

inline vtkm::Float64 GetRate()
Specifies the rate of compression.

class ZFPDecompressor3D : public vtkm::filter::Filter
Decompress a scalar field using ZFP.

Takes as input a 3D compressed array and generates the decompressed version of the data.

10.14. ZFP Compression 161

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Warning: This filter is currently only supports 3D structured cell sets.

Public Functions

inline void SetRate(vtkm::Float64 _rate)
Specifies the rate of compression.

inline vtkm::Float64 GetRate()
Specifies the rate of compression.

162 Chapter 10. Provided Filters

CHAPTER

ELEVEN

RENDERING

Rendering, the generation of images from data, is a key component to visualization. To assist with rendering, VTK-m
provides a rendering package to produce imagery from data, which is located in the vtkm::rendering namespace.

The rendering package in VTK-m is not intended to be a fully featured rendering system or library. Rather, it is a
lightweight rendering package with two primary use cases:

• New users getting started with VTK-m need a “quick and dirty” render method to see their visualization results.

• In situ visualization that integrates VTK-m with a simulation or other data-generation system might need a
lightweight rendering method.

Both of these use cases require just a basic rendering platform. Because VTK-m is designed to be integrated into larger
systems, it does not aspire to have a fully featured rendering system.

Did You Know?

VTK-m’s big sister toolkit VTK is already integrated with VTK-m and has its own fully featured rendering system. If
you need more rendering capabilities than what VTK-m provides, you can leverage VTK instead.

11.1 Scenes and Actors

The primary intent of the rendering package in VTK-m is to visually display the data that is loaded and processed. Data
are represented in VTK-m by vtkm::cont::DataSet objects, which are described in Chapter 7 (Data Sets). They
are also the object created from Chapter 8 (File I/O) and Chapter 9 (Running Filters).

To render a vtkm::cont::DataSet, the data are wrapped in a vtkm::rendering::Actor class. The
vtkm::rendering::Actor holds the components of the vtkm::cont::DataSet to render (a cell set, a coordi-
nate system, and a field). A color table can also be optionally be specified, but a default color table will be specified
otherwise.

Example 1: Creating an vtkm::rendering::Actor and adding it to a
vtkm::rendering::Scene.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet(),
2 surfaceData.GetCoordinateSystem(),
3 surfaceData.GetField("RandomPointScalars"));
4

5 vtkm::rendering::Scene scene;
6 scene.AddActor(actor);

163

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class Actor
An item to be rendered.

The Actor holds the geometry from a vtkm::cont::DataSet as well as other visual properties that define how
the geometry should look when it is rendered.

Public Functions

Actor(const vtkm::cont::UnknownCellSet &cells, const vtkm::cont::CoordinateSystem &coordinates, const
vtkm::cont::Field &scalarField)

Create an Actor object that renders a set of cells positioned by a given coordiante system.

A field to apply psudocoloring is also provided. The default colormap is applied. The cells, coordinates,
and field are typically pulled from a vtkm::cont::DataSet object.

Actor(const vtkm::cont::UnknownCellSet &cells, const vtkm::cont::CoordinateSystem &coordinates, const
vtkm::cont::Field &scalarField, const vtkm::cont::ColorTable &colorTable)

Create an Actor object that renders a set of cells positioned by a given coordiante system.

A field to apply psudocoloring is also provided. A color table providing the map from scalar values to colors
is also provided. The cells, coordinates, and field are typically pulled from a vtkm::cont::DataSet
object.

Actor(const vtkm::cont::UnknownCellSet &cells, const vtkm::cont::CoordinateSystem &coordinates, const
vtkm::cont::Field &scalarField, const vtkm::rendering::Color &color)

Create an Actor object that renders a set of cells positioned by a given coordiante system.

A constant color to apply to the object is also provided. The cells and coordinates are typically pulled from
a vtkm::cont::DataSet object.

void SetScalarRange(const vtkm::Range &scalarRange)
Specifies the range for psudocoloring.

When coloring data by mapping a scalar field to colors, this is the range used for the colors provided by the
table. If a range is not provided, the range of data in the field is used.

vtkm::rendering::Actor objects are collected together in an object called vtkm::rendering::Scene.
An vtkm::rendering::Actor is added to a vtkm::rendering::Scene with the
vtkm::rendering::Scene::AddActor() method.

class Scene
A simple collection of things to render.

The Scene is a simple collection of Actor objects.

Public Functions

void AddActor(vtkm::rendering::Actor actor)
Add an Actor to the scene.

const vtkm::rendering::Actor &GetActor(vtkm::IdComponent index) const
Get one of the Actors from the scene.

vtkm::IdComponent GetNumberOfActors() const
Get the number of Actors in the scene.

164 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::Bounds GetSpatialBounds() const
The computed spatial bounds of combined data from all contained Actors.

The following example demonstrates creating a vtkm::rendering::Scene with one vtkm::rendering::Actor.

11.2 Canvas

A canvas is a unit that represents the image space that is the target of the rendering. The canvas’ primary function is to
manage the buffers that hold the working image data during the rendering. The canvas also manages the context and
state of the rendering subsystem.

vtkm::rendering::Canvas is the base class of all canvas objects. Each type of rendering system has its own canvas
subclass, but currently the only rendering system provided by VTK-m is the internal ray tracer. The canvas for the ray
tracer is vtkm::rendering::CanvasRayTracer. vtkm::rendering::CanvasRayTracer is typically constructed
by giving the width and height of the image to render.

Example 2: Creating a canvas for rendering.

1 vtkm::rendering::CanvasRayTracer canvas(1920, 1080);

class CanvasRayTracer : public vtkm::rendering::Canvas
Represents the image space that is the target of rendering using the internal ray tracing code.

Public Functions

CanvasRayTracer(vtkm::Id width = 1024, vtkm::Id height = 1024)
Construct a canvas of a given width and height.

virtual vtkm::rendering::Canvas *NewCopy() const override
Create a new Canvas object of the same subtype as this one.

class Canvas
Represents the image space that is the target of rendering.

Subclassed by vtkm::rendering::CanvasRayTracer

Public Functions

Canvas(vtkm::Id width = 1024, vtkm::Id height = 1024)
Construct a canvas of a given width and height.

virtual vtkm::rendering::Canvas *NewCopy() const
Create a new Canvas object of the same subtype as this one.

virtual void Clear()
Clear out the image buffers.

virtual void BlendBackground()
Blend the foreground data with the background color.

11.2. Canvas 165

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

When a render is started, it is given a zeroed background rather than the background color specified by
SetBackgroundColor(). This is because when blending pixel fragments of transparent objects the back-
ground color can interfere. Call this method after the render is completed for the final blend to get the
proper background color.

vtkm::Id GetWidth() const
The width of the image.

vtkm::Id GetHeight() const
The height of the image.

const ColorBufferType &GetColorBuffer() const
Get the color channels of the image.

ColorBufferType &GetColorBuffer()
Get the color channels of the image.

const DepthBufferType &GetDepthBuffer() const
Get the depth channel of the image.

DepthBufferType &GetDepthBuffer()
Get the depth channel of the image.

vtkm::cont::DataSet GetDataSet(const std::string &colorFieldName = "color", const std::string
&depthFieldName = "depth") const

Gets the image in this Canvas as a vtkm::cont::DataSet.

The returned DataSet will be a uniform structured 2D grid. The color and depth buffers will be attached
as field with the given names. If the name for the color or depth field is empty, then that respective field
will not be added.

The arrays of the color and depth buffer are shallow copied. Thus, changes in the Canvas may cause
unexpected behavior in the DataSet.

vtkm::cont::DataSet GetDataSet(const char *colorFieldName, const char *depthFieldName = "depth") const
Gets the image in this Canvas as a vtkm::cont::DataSet.

The returned DataSet will be a uniform structured 2D grid. The color and depth buffers will be attached
as field with the given names. If the name for the color or depth field is empty, then that respective field
will not be added.

The arrays of the color and depth buffer are shallow copied. Thus, changes in the Canvas may cause
unexpected behavior in the DataSet.

void ResizeBuffers(vtkm::Id width, vtkm::Id height)
Change the size of the image.

const vtkm::rendering::Color &GetBackgroundColor() const
Specify the background color.

void SetBackgroundColor(const vtkm::rendering::Color &color)
Specify the background color.

const vtkm::rendering::Color &GetForegroundColor() const
Specify the foreground color used for annotations.

void SetForegroundColor(const vtkm::rendering::Color &color)
Specify the foreground color used for annotations.

166 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

virtual void SaveAs(const std::string &fileName) const
Save the rendered image.

If the filename ends with “.png”, it will be saved in the portable network graphic format. Otherwise, the
file will be saved in Netbpm portable pixmap format.

virtual vtkm::rendering::WorldAnnotator *CreateWorldAnnotator() const
Creates a WorldAnnotator of a type that is paired with this Canvas.

Other types of world annotators might work, but this provides a default.

The WorldAnnotator is created with the C++ new keyword (so it should be deleted with delete later). A
pointer to the created WorldAnnotator is returned.

11.3 Mappers

A mapper is a unit that converts data (managed by an vtkm::rendering::Actor) and issues commands to the render-
ing subsystem to generate images. All mappers in VTK-m are a subclass of vtkm::rendering::Mapper. Different
mappers could render different types of data in different ways. For example, one mapper might render polygonal sur-
faces whereas another might render polyhedra as a translucent volume.

class Mapper
Converts data into commands to a rendering system.

This is the base class for all mapper classes in VTK-m. Different concrete derived classes can provide different
representations and rendering techniques.

Subclassed by vtkm::rendering::MapperConnectivity, vtkm::rendering::MapperCylinder,
vtkm::rendering::MapperGlyphBase, vtkm::rendering::MapperPoint, vtkm::rendering::MapperQuad,
vtkm::rendering::MapperRayTracer, vtkm::rendering::MapperVolume, vtkm::rendering::MapperWireframer

The following mappers are provided by VTK-m.

class MapperCylinder : public vtkm::rendering::Mapper
MapperCylinder renderers edges from a cell set and renders them as cylinders via ray tracing.

Public Functions

void UseVariableRadius(bool useVariableRadius)
render points using a variable radius based on the scalar field.

The default is false.

void SetRadius(const vtkm::Float32 &radius)
Set a base radius for all points.

If a radius is never specified the default heuristic is used.

void SetRadiusDelta(const vtkm::Float32 &delta)
When using a variable radius for all cylinder, the radius delta controls how much larger and smaller radii
become based on the scalar field.

If the delta is 0 all points will have the same radius. If the delta is 0.5 then the max/min scalar values would
have a radii of base +/- base * 0.5.

11.3. Mappers 167

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class MapperGlyphBase : public vtkm::rendering::Mapper
Base class for glyph mappers.

Glyph mappers place 3D icons at various places in the mesh. The icons are placed based on the location of points
or cells in the mesh.

Subclassed by vtkm::rendering::MapperGlyphScalar, vtkm::rendering::MapperGlyphVector

Public Functions

virtual vtkm::cont::Field::Association GetAssociation() const
Specify the elements the glyphs will be associated with.

The glyph mapper will place glyphs over locations specified by either the points or the cells of a mesh. The
glyph may also be oriented by a scalar field with the same association.

virtual void SetAssociation(vtkm::cont::Field::Association association)
Specify the elements the glyphs will be associated with.

The glyph mapper will place glyphs over locations specified by either the points or the cells of a mesh. The
glyph may also be oriented by a scalar field with the same association.

virtual bool GetUseCells() const
Specify the elements the glyphs will be associated with.

The glyph mapper will place glyphs over locations specified by either the points or the cells of a mesh. The
glyph may also be oriented by a scalar field with the same association.

virtual void SetUseCells()
Specify the elements the glyphs will be associated with.

The glyph mapper will place glyphs over locations specified by either the points or the cells of a mesh. The
glyph may also be oriented by a scalar field with the same association.

virtual bool GetUsePoints() const
Specify the elements the glyphs will be associated with.

The glyph mapper will place glyphs over locations specified by either the points or the cells of a mesh. The
glyph may also be oriented by a scalar field with the same association.

virtual void SetUsePoints()
Specify the elements the glyphs will be associated with.

The glyph mapper will place glyphs over locations specified by either the points or the cells of a mesh. The
glyph may also be oriented by a scalar field with the same association.

virtual vtkm::Float32 GetBaseSize() const
Specify the size of each glyph (before scaling).

If the base size is not set to a positive value, it is automatically sized with a heuristic based off the bounds
of the geometry.

virtual void SetBaseSize(vtkm::Float32 size)
Specify the size of each glyph (before scaling).

If the base size is not set to a positive value, it is automatically sized with a heuristic based off the bounds
of the geometry.

168 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

virtual bool GetScaleByValue() const
Specify whether to scale the glyphs by a field.

virtual void SetScaleByValue(bool on)
Specify whether to scale the glyphs by a field.

virtual vtkm::Float32 GetScaleDelta() const
Specify the range of values to scale the glyphs.

When ScaleByValue is on, the glyphs will be scaled proportionally to the field magnitude. The
ScaleDelta determines how big and small they get. For a ScaleDelta of one, the smallest field values
will have glyphs of zero size and the maximum field values will be twice the base size. A ScaleDelta of
0.5 will result in glyphs sized in the range of 0.5 times the base size to 1.5 times the base size. ScaleDelta
outside the range [0, 1] is undefined.

virtual void SetScaleDelta(vtkm::Float32 delta)
Specify the range of values to scale the glyphs.

When ScaleByValue is on, the glyphs will be scaled proportionally to the field magnitude. The
ScaleDelta determines how big and small they get. For a ScaleDelta of one, the smallest field values
will have glyphs of zero size and the maximum field values will be twice the base size. A ScaleDelta of
0.5 will result in glyphs sized in the range of 0.5 times the base size to 1.5 times the base size. ScaleDelta
outside the range [0, 1] is undefined.

class MapperGlyphScalar : public vtkm::rendering::MapperGlyphBase
A mapper that produces unoriented glyphs.

This mapper is meant to be used with scalar fields. The glyphs can be optionally sized based on the field.

Public Functions

vtkm::rendering::GlyphType GetGlyphType() const
Specify the shape of the glyphs.

void SetGlyphType(vtkm::rendering::GlyphType glyphType)
Specify the shape of the glyphs.

class MapperGlyphVector : public vtkm::rendering::MapperGlyphBase
A mapper that produces oriented glyphs.

This mapper is meant to be used with 3D vector fields. The glyphs are oriented in the direction of the vector
field. The glyphs can be optionally sized based on the magnitude of the field.

Public Functions

vtkm::rendering::GlyphType GetGlyphType() const
Specify the shape of the glyphs.

void SetGlyphType(vtkm::rendering::GlyphType glyphType)
Specify the shape of the glyphs.

11.3. Mappers 169

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class MapperPoint : public vtkm::rendering::Mapper
This mapper renders points from a cell set.

This mapper can natively create points from vertex cell shapes as well as use the points defined by a coordinate
system.

Public Functions

virtual vtkm::cont::Field::Association GetAssociation() const
Specify the elements the points will be associated with.

The point mapper will place visible points over locations specified by either the points or the cells of a
mesh.

virtual void SetAssociation(vtkm::cont::Field::Association association)
Specify the elements the points will be associated with.

The point mapper will place visible points over locations specified by either the points or the cells of a
mesh.

virtual bool GetUseCells() const
Specify the elements the points will be associated with.

The point mapper will place visible points over locations specified by either the points or the cells of a
mesh.

virtual void SetUseCells()
Specify the elements the points will be associated with.

The point mapper will place visible points over locations specified by either the points or the cells of a
mesh.

virtual bool GetUsePoints() const
Specify the elements the points will be associated with.

The point mapper will place visible points over locations specified by either the points or the cells of a
mesh.

virtual void SetUsePoints()
Specify the elements the points will be associated with.

The point mapper will place visible points over locations specified by either the points or the cells of a
mesh.

void UseVariableRadius(bool useVariableRadius)
Render points using a variable radius based on the scalar field.

The default is false.

void SetRadius(const vtkm::Float32 &radius)
Set a base raidus for all points.

If a radius is never specified the default heuristic is used.

void SetRadiusDelta(const vtkm::Float32 &delta)
When using a variable raidus for all points, the radius delta controls how much larger and smaller radii
become based on the scalar field.

If the delta is 0 all points will have the same radius. If the delta is 0.5 then the max/min scalar values would
have a radii of base +/- base * 0.5.

170 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class MapperQuad : public vtkm::rendering::Mapper
A mapper that renderers quad faces from a cell set via ray tracing.

As opposed to breaking quads into two trianges, scalars are
interpolated using all 4 points of the quad resulting in more
accurate interpolation.

class MapperRayTracer : public vtkm::rendering::Mapper
Mapper to render surfaces using ray tracing.

Provides a “standard” data mapper that uses ray tracing to render the surfaces of DataSet objects.

class MapperVolume : public vtkm::rendering::Mapper
Mapper that renders a volume as a translucent cloud.

Public Functions

void SetSampleDistance(const vtkm::Float32 distance)
Specify how much space is between samples of rays that traverse the volume.

The volume rendering ray caster finds the entry point of the ray through the volume and then samples the
volume along the direction of the ray at regular intervals. This parameter specifies how far these samples
occur.

class MapperWireframer : public vtkm::rendering::Mapper
Mapper that renders the edges of a mesh.

Each edge in the mesh is rendered as a line, which provides a wireframe representation of the data.

Public Functions

bool GetShowInternalZones() const
Specify whether to show interior edges.

When rendering a 3D volume of data, the MapperWireframer can show either the wireframe of the exter-
nal surface of the data (the default) or render the entire wireframe including the internal edges.

void SetShowInternalZones(bool showInternalZones)
Specify whether to show interior edges.

When rendering a 3D volume of data, the MapperWireframer can show either the wireframe of the exter-
nal surface of the data (the default) or render the entire wireframe including the internal edges.

11.3. Mappers 171

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

11.4 Views

A view is a unit that collects all the structures needed to perform rendering. It contains everything
needed to take a vtkm::rendering::Scene and use a vtkm::rendering::Mapper to render it onto a
vtkm::rendering::Canvas. The view also annotates the image with spatial and scalar properties.

The base class for all views is vtkm::rendering::View, which is an abstract class. You must choose
one of the three provided subclasses, vtkm::rendering::View3D, vtkm::rendering::View2D, and
vtkm::rendering::View3D, depending on the type of data being presented. All three view classes take a
vtkm::rendering::Scene, a vtkm::rendering::Mapper, and a vtkm::rendering::Canvas as arguments to
their constructor.

Example 3: Constructing a vtkm::rendering::View.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet(),
2 surfaceData.GetCoordinateSystem(),
3 surfaceData.GetField("RandomPointScalars"));
4

5 vtkm::rendering::Scene scene;
6 scene.AddActor(actor);
7

8 vtkm::rendering::MapperRayTracer mapper;
9 vtkm::rendering::CanvasRayTracer canvas(1920, 1080);

10

11 vtkm::rendering::View3D view(scene, mapper, canvas);

class View
The abstract class representing the view of a rendering scene.

Subclassed by vtkm::rendering::View1D, vtkm::rendering::View2D, vtkm::rendering::View3D

Public Functions

const vtkm::rendering::Scene &GetScene() const
Specify the scene object holding the objects to render.

vtkm::rendering::Scene &GetScene()
Specify the scene object holding the objects to render.

void SetScene(const vtkm::rendering::Scene &scene)
Specify the scene object holding the objects to render.

const vtkm::rendering::Mapper &GetMapper() const
Specify the mapper object determining how objects are rendered.

vtkm::rendering::Mapper &GetMapper()
Specify the mapper object determining how objects are rendered.

const vtkm::rendering::Canvas &GetCanvas() const
Specify the canvas object that holds the buffer to render into.

vtkm::rendering::Canvas &GetCanvas()
Specify the canvas object that holds the buffer to render into.

172 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

const vtkm::rendering::Camera &GetCamera() const
Specify the perspective from which to render a scene.

vtkm::rendering::Camera &GetCamera()
Specify the perspective from which to render a scene.

void SetCamera(const vtkm::rendering::Camera &camera)
Specify the perspective from which to render a scene.

const vtkm::rendering::Color &GetBackgroundColor() const
Specify the color used where nothing is rendered.

void SetBackgroundColor(const vtkm::rendering::Color &color)
Specify the color used where nothing is rendered.

void SetForegroundColor(const vtkm::rendering::Color &color)
Specify the color of foreground elements.

The foreground is typically used for annotation elements. The foreground should contrast well with the
background.

virtual void Paint() = 0
Render a scene and store the result in the canvas’ buffers.

void SaveAs(const std::string &fileName) const
Save the rendered image.

If the filename ends with “.png”, it will be saved in the portable network graphic format. Otherwise, the
file will be saved in Netbpm portable pixmap format.

class View1D : public vtkm::rendering::View
A view for a 1D data set.

1D data are rendered as an X-Y plot with the values shone on the Y axis.

Public Functions

virtual void Paint() override
Render a scene and store the result in the canvas’ buffers.

inline void SetLogX(bool l)
Specify whether log scaling should be used on the X axis.

inline void SetLogY(bool l)
Specify whether log scaling should be used on the Y axis.

class View2D : public vtkm::rendering::View
A view for a 3D data set.

2D data are rendered directly on the X-Y plane.

11.4. Views 173

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

virtual void Paint() override
Render a scene and store the result in the canvas’ buffers.

class View3D : public vtkm::rendering::View
A view for a 3D data set.

Public Functions

virtual void Paint() override
Render a scene and store the result in the canvas’ buffers.

The vtkm::rendering::View also maintains a background color (the color used in areas where nothing is drawn)
and a foreground color (the color used for annotation elements). By default, the vtkm::rendering::View has a black
background and a white foreground. These can be set in the view’s constructor, but it is a bit more readable to set them
using the vtkm::rendering::View::SetBackground() and vtkm::rendering::View::SetForeground()
methods. In either case, the colors are specified using the vtkm::rendering::Color helper class, which manages
the red, green, and blue color channels as well as an optional alpha channel. These channel values are given as floating
point values between 0 and 1.

Example 4: Changing the background and foreground colors of a
vtkm::rendering::View.

1 view.SetBackgroundColor(vtkm::rendering::Color(1.0f, 1.0f, 1.0f));
2 view.SetForegroundColor(vtkm::rendering::Color(0.0f, 0.0f, 0.0f));

Common Errors

Although the background and foreground colors are set independently, it will be difficult or impossible to see the
annotation if there is not enough contrast between the background and foreground colors. Thus, when changing a
vtkm::rendering::View’s background color, it is always good practice to also change the foreground color.

class Color
Representation of a color.

The color is defined as red, green, and blue intensities as well as an alpha representation of transparency (RGBA).
The class provides mechanisms to retrieve the color as 8-bit integers or floating point values in the range [0, 1].

Public Functions

inline Color()
Create a black color.

inline Color(vtkm::Float32 r_, vtkm::Float32 g_, vtkm::Float32 b_, vtkm::Float32 a_ = 1.f)
Create a color with specified RGBA values.

The values are floating point and in the range [0, 1].

174 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline Color(const vtkm::Vec4f_32 &components)
Create a color with specified RGBA values.

The values are floating point and in the range [0, 1].

inline void SetComponentFromByte(vtkm::Int32 i, vtkm::UInt8 v)
Set the color value from 8 bit RGBA components.

The components are packed together into a 32-bit (4-byte) values.

Once the vtkm::rendering::View is constructed, intialized, and set up, it is ready to render. This is done by calling
the vtkm::rendering::View::Paint() method.

Example 5: Using vtkm::rendering::Canvas::Paint() in a display
callback.

1 view.Paint();

Putting together Example 3, Example 4, and Example 5, the final render of a view looks like that in Figure 1.

Figure 1: Example output of VTK-m’s rendering system.

Of course, the vtkm::rendering::CanvasRayTracer created in Example 3 is an offscreen rendering buffer, so you
cannot immediately see the image. When doing batch visualization, an easy way to output the image to a file for later
viewing is with the vtkm::rendering::View::SaveAs() method. This method can save the image in either PNG
or in the portable pixelmap (PPM) format.

Example 6: Saving the result of a render as an image file.

1 view.SaveAs("BasicRendering.png");

We visit doing interactive rendering in a GUI later in Section 11.7 (Interactive Rendering).

11.4. Views 175

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

11.5 Changing Rendering Modes

Example 3 constructs the default mapper for ray tracing, which renders the data as an opaque solid. However,
you can change the rendering mode by using one of the other mappers listed in Section 11.3 (Mappers). For
example, say you just wanted to see a wireframe representation of your data. You can achieve this by using
vtkm::rendering::MapperWireframer.

Example 7: Creating a mapper for a wireframe representation.

1 vtkm::rendering::MapperWireframer mapper;
2 vtkm::rendering::View3D view(scene, mapper, canvas);

Alternatively, perhaps you wish to render just the points of mesh. vtkm::rendering::MapperGlyphScalar renders
the points as glyphs and also optionally can scale the glyphs based on field values.

Example 8: Creating a mapper for point representation.

1 vtkm::rendering::MapperGlyphScalar mapper;
2 mapper.SetGlyphType(vtkm::rendering::GlyphType::Cube);
3 mapper.SetScaleByValue(true);
4 mapper.SetScaleDelta(10.0f);
5

6 vtkm::rendering::View3D view(scene, mapper, canvas);

These mappers respectively render the images shown in Figure 2. Other mappers, such as those that can render translu-
cent volumes, are also available.

11.6 Manipulating the Camera

The vtkm::rendering::View uses an object called vtkm::rendering::Camera to describe the vantage point
from which to draw the geometry. The camera can be retrieved from the vtkm::rendering::View::GetCamera()
method. That retrieved camera can be directly manipulated or a new camera can be provided by calling
vtkm::rendering::View::SetCamera(). In this section we discuss camera setups typical during view set up.
Camera movement during interactive rendering is revisited in Section 11.7.2 (Camera Movement).

class Camera
Specifies the viewport for a rendering.

The vtkm::rendering::View object holds a Camera object to specify from what perspective the rendering
should take place.

A Camera operates in one of two major modes: 2D mode or 3D mode. 2D mode is designed for looking at flat
geometry (or close to flat geometry) that is parallel to the x-y plane. 3D mode provides the freedom to place the
camera anywhere in 3D space.

176 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 2: Examples of alternate rendering modes using different mappers. The top left image is ren-
dered with vtkm::rendering::MapperWireframer. The top right and bottom left images are ren-
dered with vtkm::rendering::MapperGlyphScalar. The bottom right image is rendered with
vtkm::rendering::MapperGlyphVector.

11.6. Manipulating the Camera 177

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline vtkm::rendering::Camera::Mode GetMode() const
The mode of the camera (2D or 3D).

vtkm::rendering::Camera can be set to a 2D or 3D mode. 2D mode is used for looking at data in the
x-y plane. 3D mode allows the camera to be positioned anywhere and pointing at any place in 3D.

inline void SetMode(vtkm::rendering::Camera::Mode mode)
The mode of the camera (2D or 3D).

vtkm::rendering::Camera can be set to a 2D or 3D mode. 2D mode is used for looking at data in the
x-y plane. 3D mode allows the camera to be positioned anywhere and pointing at any place in 3D.

inline void SetModeTo3D()
The mode of the camera (2D or 3D).

vtkm::rendering::Camera can be set to a 2D or 3D mode. 2D mode is used for looking at data in the
x-y plane. 3D mode allows the camera to be positioned anywhere and pointing at any place in 3D.

inline void SetModeTo2D()
The mode of the camera (2D or 3D).

vtkm::rendering::Camera can be set to a 2D or 3D mode. 2D mode is used for looking at data in the
x-y plane. 3D mode allows the camera to be positioned anywhere and pointing at any place in 3D.

inline vtkm::Range GetClippingRange() const
The clipping range of the camera.

The clipping range establishes the near and far clipping planes. These clipping planes are parallel to the
viewing plane. The planes are defined by simply specifying the distance from the viewpoint. Renderers
can (and usually do) remove any geometry closer than the near plane and further than the far plane.

For precision purposes, it is best to place the near plane as far away as possible (while still being in front
of any geometry). The far plane usually has less effect on the depth precision, so can be placed well far
behind the geometry.

inline void SetClippingRange(vtkm::Float32 nearPlane, vtkm::Float32 farPlane)
The clipping range of the camera.

The clipping range establishes the near and far clipping planes. These clipping planes are parallel to the
viewing plane. The planes are defined by simply specifying the distance from the viewpoint. Renderers
can (and usually do) remove any geometry closer than the near plane and further than the far plane.

For precision purposes, it is best to place the near plane as far away as possible (while still being in front
of any geometry). The far plane usually has less effect on the depth precision, so can be placed well far
behind the geometry.

inline void SetClippingRange(vtkm::Float64 nearPlane, vtkm::Float64 farPlane)
The clipping range of the camera.

The clipping range establishes the near and far clipping planes. These clipping planes are parallel to the
viewing plane. The planes are defined by simply specifying the distance from the viewpoint. Renderers
can (and usually do) remove any geometry closer than the near plane and further than the far plane.

For precision purposes, it is best to place the near plane as far away as possible (while still being in front
of any geometry). The far plane usually has less effect on the depth precision, so can be placed well far
behind the geometry.

178 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetClippingRange(const vtkm::Range &nearFarRange)
The clipping range of the camera.

The clipping range establishes the near and far clipping planes. These clipping planes are parallel to the
viewing plane. The planes are defined by simply specifying the distance from the viewpoint. Renderers
can (and usually do) remove any geometry closer than the near plane and further than the far plane.

For precision purposes, it is best to place the near plane as far away as possible (while still being in front
of any geometry). The far plane usually has less effect on the depth precision, so can be placed well far
behind the geometry.

inline void GetViewport(vtkm::Float32 &left, vtkm::Float32 &right, vtkm::Float32 &bottom,
vtkm::Float32 &top) const

The viewport of the projection.

The projection of the camera can be offset to be centered around a subset of the rendered image. This is
established with a “viewport,” which is defined by the left/right and bottom/top of this viewport. The values
of the viewport are relative to the rendered image’s bounds. The left and bottom of the image are at -1 and
the right and top are at 1.

inline void GetViewport(vtkm::Float64 &left, vtkm::Float64 &right, vtkm::Float64 &bottom,
vtkm::Float64 &top) const

The viewport of the projection.

The projection of the camera can be offset to be centered around a subset of the rendered image. This is
established with a “viewport,” which is defined by the left/right and bottom/top of this viewport. The values
of the viewport are relative to the rendered image’s bounds. The left and bottom of the image are at -1 and
the right and top are at 1.

inline vtkm::Bounds GetViewport() const
The viewport of the projection.

The projection of the camera can be offset to be centered around a subset of the rendered image. This is
established with a “viewport,” which is defined by the left/right and bottom/top of this viewport. The values
of the viewport are relative to the rendered image’s bounds. The left and bottom of the image are at -1 and
the right and top are at 1.

inline void SetViewport(vtkm::Float32 left, vtkm::Float32 right, vtkm::Float32 bottom, vtkm::Float32 top)
The viewport of the projection.

The projection of the camera can be offset to be centered around a subset of the rendered image. This is
established with a “viewport,” which is defined by the left/right and bottom/top of this viewport. The values
of the viewport are relative to the rendered image’s bounds. The left and bottom of the image are at -1 and
the right and top are at 1.

inline void SetViewport(vtkm::Float64 left, vtkm::Float64 right, vtkm::Float64 bottom, vtkm::Float64 top)
The viewport of the projection.

The projection of the camera can be offset to be centered around a subset of the rendered image. This is
established with a “viewport,” which is defined by the left/right and bottom/top of this viewport. The values
of the viewport are relative to the rendered image’s bounds. The left and bottom of the image are at -1 and
the right and top are at 1.

inline void SetViewport(const vtkm::Bounds &viewportBounds)
The viewport of the projection.

The projection of the camera can be offset to be centered around a subset of the rendered image. This is
established with a “viewport,” which is defined by the left/right and bottom/top of this viewport. The values

11.6. Manipulating the Camera 179

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

of the viewport are relative to the rendered image’s bounds. The left and bottom of the image are at -1 and
the right and top are at 1.

inline const vtkm::Vec3f_32 &GetLookAt() const
The focal point the camera is looking at in 3D mode.

When in 3D mode, the camera is set up to be facing the LookAt position. If LookAt is set, the mode is
changed to 3D mode.

inline void SetLookAt(const vtkm::Vec3f_32 &lookAt)
The focal point the camera is looking at in 3D mode.

When in 3D mode, the camera is set up to be facing the LookAt position. If LookAt is set, the mode is
changed to 3D mode.

inline void SetLookAt(const vtkm::Vec<Float64, 3> &lookAt)
The focal point the camera is looking at in 3D mode.

When in 3D mode, the camera is set up to be facing the LookAt position. If LookAt is set, the mode is
changed to 3D mode.

inline const vtkm::Vec3f_32 &GetPosition() const
The spatial position of the camera in 3D mode.

When in 3D mode, the camera is modeled to be at a particular location. If Position is set, the mode is
changed to 3D mode.

inline void SetPosition(const vtkm::Vec3f_32 &position)
The spatial position of the camera in 3D mode.

When in 3D mode, the camera is modeled to be at a particular location. If Position is set, the mode is
changed to 3D mode.

inline void SetPosition(const vtkm::Vec3f_64 &position)
The spatial position of the camera in 3D mode.

When in 3D mode, the camera is modeled to be at a particular location. If Position is set, the mode is
changed to 3D mode.

inline const vtkm::Vec3f_32 &GetViewUp() const
The up orientation of the camera in 3D mode.

When in 3D mode, the camera is modeled to be at a particular location and looking at a particular spot.
The view up vector orients the rotation of the image so that the top of the image is in the direction pointed
to by view up. If ViewUp is set, the mode is changed to 3D mode.

inline void SetViewUp(const vtkm::Vec3f_32 &viewUp)
The up orientation of the camera in 3D mode.

When in 3D mode, the camera is modeled to be at a particular location and looking at a particular spot.
The view up vector orients the rotation of the image so that the top of the image is in the direction pointed
to by view up. If ViewUp is set, the mode is changed to 3D mode.

inline void SetViewUp(const vtkm::Vec3f_64 &viewUp)
The up orientation of the camera in 3D mode.

When in 3D mode, the camera is modeled to be at a particular location and looking at a particular spot.
The view up vector orients the rotation of the image so that the top of the image is in the direction pointed
to by view up. If ViewUp is set, the mode is changed to 3D mode.

180 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::Float32 GetXScale() const
The xscale of the camera.

The xscale forces the 2D curves to be full-frame

Setting the xscale changes the mode to 2D.

inline void SetXScale(vtkm::Float32 xscale)
The xscale of the camera.

The xscale forces the 2D curves to be full-frame

Setting the xscale changes the mode to 2D.

inline void SetXScale(vtkm::Float64 xscale)
The xscale of the camera.

The xscale forces the 2D curves to be full-frame

Setting the xscale changes the mode to 2D.

inline vtkm::Float32 GetFieldOfView() const
The field of view angle.

The field of view defines the angle (in degrees) that are visible from the camera position.

Setting the field of view changes the mode to 3D.

inline void SetFieldOfView(vtkm::Float32 fov)
The field of view angle.

The field of view defines the angle (in degrees) that are visible from the camera position.

Setting the field of view changes the mode to 3D.

inline void SetFieldOfView(vtkm::Float64 fov)
The field of view angle.

The field of view defines the angle (in degrees) that are visible from the camera position.

Setting the field of view changes the mode to 3D.

void Pan(vtkm::Float32 dx, vtkm::Float32 dy)
Pans the camera.

Panning the camera shifts the view horizontially and/or vertically with respect to the image plane.

Panning works in either 2D or 3D mode.

inline void Pan(vtkm::Float64 dx, vtkm::Float64 dy)
Pans the camera.

Panning the camera shifts the view horizontially and/or vertically with respect to the image plane.

Panning works in either 2D or 3D mode.

inline void Pan(vtkm::Vec2f_32 direction)
Pans the camera.

Panning the camera shifts the view horizontially and/or vertically with respect to the image plane.

Panning works in either 2D or 3D mode.

11.6. Manipulating the Camera 181

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void Pan(vtkm::Vec2f_64 direction)
Pans the camera.

Panning the camera shifts the view horizontially and/or vertically with respect to the image plane.

Panning works in either 2D or 3D mode.

inline vtkm::Vec2f_32 GetPan() const
Pans the camera.

Panning the camera shifts the view horizontially and/or vertically with respect to the image plane.

Panning works in either 2D or 3D mode.

void Zoom(vtkm::Float32 zoom)
Zooms the camera in or out.

Zooming the camera scales everything in the image up or down. Positive zoom makes the geometry look
bigger or closer. Negative zoom has the opposite effect. A zoom of 0 has no effect.

Zooming works in either 2D or 3D mode.

inline void Zoom(vtkm::Float64 zoom)
Zooms the camera in or out.

Zooming the camera scales everything in the image up or down. Positive zoom makes the geometry look
bigger or closer. Negative zoom has the opposite effect. A zoom of 0 has no effect.

Zooming works in either 2D or 3D mode.

inline vtkm::Float32 GetZoom() const
Zooms the camera in or out.

Zooming the camera scales everything in the image up or down. Positive zoom makes the geometry look
bigger or closer. Negative zoom has the opposite effect. A zoom of 0 has no effect.

Zooming works in either 2D or 3D mode.

void TrackballRotate(vtkm::Float32 startX, vtkm::Float32 startY, vtkm::Float32 endX, vtkm::Float32
endY)

Moves the camera as if a point was dragged along a sphere.

TrackballRotate() takes the normalized screen coordinates (in the range -1 to 1) and rotates the camera
around the LookAt position. The rotation first projects the points to a sphere around the LookAt position.
The camera is then rotated as if the start point was dragged to the end point along with the world.

TrackballRotate() changes the mode to 3D.

inline void TrackballRotate(vtkm::Float64 startX, vtkm::Float64 startY, vtkm::Float64 endX,
vtkm::Float64 endY)

Moves the camera as if a point was dragged along a sphere.

TrackballRotate() takes the normalized screen coordinates (in the range -1 to 1) and rotates the camera
around the LookAt position. The rotation first projects the points to a sphere around the LookAt position.
The camera is then rotated as if the start point was dragged to the end point along with the world.

TrackballRotate() changes the mode to 3D.

void ResetToBounds(const vtkm::Bounds &dataBounds)
Set up the camera to look at geometry.

ResetToBounds() takes a vtkm::Bounds structure containing the bounds in 3D space that contain the
geometry being rendered. This method sets up the camera so that it is looking at this region in space. The

182 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

view direction is preserved. ResetToBounds() can also take optional padding that the viewpoint should
preserve around the object. Padding is specified as the fraction of the bounds to add as padding.

void ResetToBounds(const vtkm::Bounds &dataBounds, vtkm::Float64 dataViewPadding)
Set up the camera to look at geometry.

ResetToBounds() takes a vtkm::Bounds structure containing the bounds in 3D space that contain the
geometry being rendered. This method sets up the camera so that it is looking at this region in space. The
view direction is preserved. ResetToBounds() can also take optional padding that the viewpoint should
preserve around the object. Padding is specified as the fraction of the bounds to add as padding.

void ResetToBounds(const vtkm::Bounds &dataBounds, vtkm::Float64 XDataViewPadding, vtkm::Float64
YDataViewPadding, vtkm::Float64 ZDataViewPadding)

Set up the camera to look at geometry.

ResetToBounds() takes a vtkm::Bounds structure containing the bounds in 3D space that contain the
geometry being rendered. This method sets up the camera so that it is looking at this region in space. The
view direction is preserved. ResetToBounds() can also take optional padding that the viewpoint should
preserve around the object. Padding is specified as the fraction of the bounds to add as padding.

void Roll(vtkm::Float32 angleDegrees)
Roll the camera.

Rotates the camera around the view direction by the given angle. The angle is given in degrees.

Roll is currently only supported for 3D cameras.

inline void Roll(vtkm::Float64 angleDegrees)
Roll the camera.

Rotates the camera around the view direction by the given angle. The angle is given in degrees.

Roll is currently only supported for 3D cameras.

void Azimuth(vtkm::Float32 angleDegrees)
Rotate the camera about the view up vector centered at the focal point.

Note that the view up vector is whatever was set via SetViewUp(), and is not necessarily perpendicular to
the direction of projection. The angle is given in degrees.

Azimuth() only makes sense for 3D cameras, so the camera mode will be set to 3D when this method is
called.

inline void Azimuth(vtkm::Float64 angleDegrees)
Rotate the camera about the view up vector centered at the focal point.

Note that the view up vector is whatever was set via SetViewUp(), and is not necessarily perpendicular to
the direction of projection. The angle is given in degrees.

Azimuth() only makes sense for 3D cameras, so the camera mode will be set to 3D when this method is
called.

void Elevation(vtkm::Float32 angleDegrees)
Rotate the camera vertically around the focal point.

Specifically, this rotates the camera about the cross product of the negative of the direction of projection and
the view up vector, using the focal point (LookAt) as the center of rotation. The angle is given in degrees.

Elevation() only makes sense for 3D cameras, so the camera mode will be set to 3D when this method
is called.

11.6. Manipulating the Camera 183

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void Elevation(vtkm::Float64 angleDegrees)
Rotate the camera vertically around the focal point.

Specifically, this rotates the camera about the cross product of the negative of the direction of projection and
the view up vector, using the focal point (LookAt) as the center of rotation. The angle is given in degrees.

Elevation() only makes sense for 3D cameras, so the camera mode will be set to 3D when this method
is called.

void Dolly(vtkm::Float32 value)
Move the camera toward or away from the focal point.

Specifically, this divides the camera’s distance from the focal point (LookAt) by the given value. Use a
value greater than one to dolly in toward the focal point, and use a value less than one to dolly-out away
from the focal point.

Dolly() has a similar effect as Zoom() since an object will appear larger when the camera is closer.
However, because you are moving the camera, Dolly() can change the perspective relative to objects such
as moving inside an object for an interior perspective whereas Zoom()will just change the size of the visible
objects.

Dolly() only makes sense for 3D cameras, so the camera mode will be set to 3D when this method is
called.

inline void Dolly(vtkm::Float64 value)
Move the camera toward or away from the focal point.

Specifically, this divides the camera’s distance from the focal point (LookAt) by the given value. Use a
value greater than one to dolly in toward the focal point, and use a value less than one to dolly-out away
from the focal point.

Dolly() has a similar effect as Zoom() since an object will appear larger when the camera is closer.
However, because you are moving the camera, Dolly() can change the perspective relative to objects such
as moving inside an object for an interior perspective whereas Zoom()will just change the size of the visible
objects.

Dolly() only makes sense for 3D cameras, so the camera mode will be set to 3D when this method is
called.

inline void GetViewRange2D(vtkm::Float32 &left, vtkm::Float32 &right, vtkm::Float32 &bottom,
vtkm::Float32 &top) const

The viewable region in the x-y plane.

When the camera is in 2D, it is looking at some region of the x-y plane. The region being looked at is
defined by the range in x (determined by the left and right sides) and by the range in y (determined by the
bottom and top sides).

SetViewRange2D() changes the camera mode to 2D.

inline vtkm::Bounds GetViewRange2D() const
The viewable region in the x-y plane.

When the camera is in 2D, it is looking at some region of the x-y plane. The region being looked at is
defined by the range in x (determined by the left and right sides) and by the range in y (determined by the
bottom and top sides).

SetViewRange2D() changes the camera mode to 2D.

inline void SetViewRange2D(vtkm::Float32 left, vtkm::Float32 right, vtkm::Float32 bottom, vtkm::Float32
top)

184 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The viewable region in the x-y plane.

When the camera is in 2D, it is looking at some region of the x-y plane. The region being looked at is
defined by the range in x (determined by the left and right sides) and by the range in y (determined by the
bottom and top sides).

SetViewRange2D() changes the camera mode to 2D.

inline void SetViewRange2D(vtkm::Float64 left, vtkm::Float64 right, vtkm::Float64 bottom, vtkm::Float64
top)

The viewable region in the x-y plane.

When the camera is in 2D, it is looking at some region of the x-y plane. The region being looked at is
defined by the range in x (determined by the left and right sides) and by the range in y (determined by the
bottom and top sides).

SetViewRange2D() changes the camera mode to 2D.

inline void SetViewRange2D(const vtkm::Range &xRange, const vtkm::Range &yRange)
The viewable region in the x-y plane.

When the camera is in 2D, it is looking at some region of the x-y plane. The region being looked at is
defined by the range in x (determined by the left and right sides) and by the range in y (determined by the
bottom and top sides).

SetViewRange2D() changes the camera mode to 2D.

A vtkm::rendering::Camera operates in one of two major modes: 2D mode or 3D mode. 2D mode
is designed for looking at flat geometry (or close to flat geometry) that is parallel to the x-y plane. 3D
mode provides the freedom to place the camera anywhere in 3D space. The different modes can be set
with vtkm::rendering::Camera::SetModeTo2D() and vtkm::rendering::Camera::SetModeTo3D(), respec-
tively. The interaction with the camera in these two modes is very different.

11.6.1 Common Camera Controls

Some camera controls operate relative to the rendered image and are common among the 2D and 3D camera modes.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the
vtkm::cont::Camera::Pan() method. vtkm::cont::Camera::Pan() takes two arguments: the amount to pan
in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus on the
right edge of the image whereas a pan of −1 in the x direction moves the camera to focus on the left edge of the image.

11.6. Manipulating the Camera 185

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 9: Panning the camera.

1 view.GetCamera().Pan(deltaX, deltaY);

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the
vtkm::rendering::Camera::Zoom() method. vtkm::rendering::Camera::Zoom() takes a single argument
specifying the zoom factor. A positive number draws the geometry larger (zoom in), and larger zoom factor results
in larger geometry. Likewise, a negative number draws the geometry smaller (zoom out). A zoom factor of 0 has no
effect.

Example 10: Zooming the camera.

1 view.GetCamera().Zoom(zoomFactor);

11.6.2 2D Camera Mode

The 2D camera is restricted to looking at some region of the x-y plane.

View Range

The vantage point of a 2D camera can be specified by simply giving the region in the x-y plane to look at. This region
is specified by calling vtkm::rendering::Camera::SetViewRange2D(). This method takes the left, right, bottom,
and top of the region to view. Typically these are set to the range of the geometry in world space as shown in Figure 3.

Figure 3: The view range bounds to give a vtkm::rendering::Camera.

186 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

11.6.3 3D Camera Mode

The 3D camera is a free-form camera that can be placed anywhere in 3D space and can look in any direction. The
projection of the 3D camera is based on the pinhole camera pinhole camera model in which all viewing rays intersect
a single point. This single point is the camera’s position.

Position and Orientation

The position of the camera, which is the point where the observer is viewing the scene, can be set with the
vtkm::rendering::Camera::SetPosition() method. The direction the camera is facing is specified by giv-
ing a position to focus on. This is called either the “look at” point or the focal point and is specified with the
vtkm::rendering::Camera::SetLookAt()method. Figure 4 shows the relationship between the position and look
at points.

Figure 4: The position and orientation parameters for a vtkm::rendering::Camera.

In addition to specifying the direction to point the camera, the camera must also know which direction is considered
“up.” This is specified with the view up vector using the vtkm::rendering::Camera::SetViewUp() method. The
view up vector points from the camera position (in the center of the image) to the top of the image. The view up vector
in relation to the camera position and orientation is shown in Figure 4.

Another important parameter for the camera is its field of view. The field of view specifies how wide of a region the
camera can see. It is specified by giving the angle in degrees of the cone of visible region emanating from the pinhole
of the camera to the vtkm::rendering::Camera::SetFieldOfView() method. The field of view angle in relation
to the camera orientation is shown in Figure 4. A field of view angle of 60∘ usually works well.

11.6. Manipulating the Camera 187

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Finally, the camera must specify a clipping region that defines the valid range of depths for the object. This is a pair
of planes parallel to the image that all visible data must lie in. Each of these planes is defined simply by their distance
to the camera position. The near clip plane is closer to the camera and must be in front of all geometry. The far clip
plane is further from the camera and must be behind all geometry. The distance to both the near and far planes are
specified with the vtkm::rendering::Camera::SetClippingRange()method. Figure 4 shows the clipping planes
in relationship to the camera position and orientation.

Example 11: Directly setting vtkm::rendering::Camera position and
orientation.

1 camera.SetPosition(vtkm::make_Vec(10.0, 6.0, 6.0));
2 camera.SetLookAt(vtkm::make_Vec(0.0, 0.0, 0.0));
3 camera.SetViewUp(vtkm::make_Vec(0.0, 1.0, 0.0));
4 camera.SetFieldOfView(60.0);
5 camera.SetClippingRange(0.1, 100.0);

Movement

In addition to specifically setting the position and orientation of the camera, vtkm::rendering::Camera contains
several convenience methods that move the camera relative to its position and look at point.

Two such methods are elevation and azimuth, which move the camera around the sphere centered at the
look at point. vtkm::rendering::Camera::Elevation() raises or lowers the camera. Positive val-
ues raise the camera up (in the direction of the view up vector) whereas negative values lower the camera
down. vtkm::rendering::Camera::Azimuth() moves the camera around the look at point to the left
or right. Positive values move the camera to the right whereas negative values move the camera to the
left. Both vtkm::rendering::Camera::Elevation() and vtkm::rendering::Camera::Azimuth()
specify the amount of rotation in terms of degrees. Figure 5 shows the relative movements of
vtkm::rendering::Camera::Elevation() and vtkm::rendering::Camera::Azimuth().

Figure 5: vtkm::rendering::Camera movement functions relative to position and orientation.

188 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 12: Moving the camera around the look at point.

1 view.GetCamera().Azimuth(45.0);
2 view.GetCamera().Elevation(45.0);

Common Errors

The vtkm::rendering::Camera::Elevation() and vtkm::rendering::Camera::Azimuth()methods change
the position of the camera, but not the view up vector. This can cause some wild camera orientation changes when the
direction of the camera view is near parallel to the view up vector, which often happens when the elevation is raised or
lowered by about 90 degrees.

In addition to rotating the camera around the look at point, you can move the camera closer or fur-
ther from the look at point. This is done with the vtkm::rendering::Camera::Dolly() method. The
vtkm::rendering::Camera::Dolly() method takes a single value that is the factor to scale the distance between
camera and look at point. Values greater than one move the camera away, values less than one move the camera closer.
The direction of dolly movement is shown in Figure 5.

Finally, the vtkm::rendering::Camera::Roll() method rotates the camera around the viewing direction. It has
the effect of rotating the rendered image. The vtkm::rendering::Camera::Roll() method takes a single value
that is the angle to rotate in degrees. The direction of roll movement is shown in Figure 5.

Reset

Setting a specific camera position and orientation can be frustrating, particularly when the size, shape, and location of
the geometry is not known a priori. Typically this involves querying the data and finding a good camera orientation.

To make this process simpler, the vtkm::rendering::Camera::ResetToBounds() convenience method auto-
matically positions the camera based on the spatial bounds of the geometry. The most expedient method to
find the spatial bounds of the geometry being rendered is to get the vtkm::rendering::Scene object and call
vtkm::rendering::Scene::GetSpatialBounds(). The vtkm::rendering::Scene object can be retrieved from
the vtkm::rendering::View, which, as described in Section 11.4 (Views), is the central object for managing ren-
dering.

Example 13: Resetting a vtkm::rendering::Camera to view geome-
try.

1 void ResetCamera(vtkm::rendering::View& view)
2 {
3 vtkm::Bounds bounds = view.GetScene().GetSpatialBounds();
4 view.GetCamera().ResetToBounds(bounds);
5 }

The vtkm::rendering::Camera::ResetToBounds() method operates by placing the look at point in the center of
the bounds and then placing the position of the camera relative to that look at point. The position is such that the view
direction is the same as before the call to vtkm::rendering::Camera::ResetToBounds() and the distance between
the camera position and look at point has the bounds roughly fill the rendered image. This behavior is a convenient
way to update the camera to make the geometry most visible while still preserving the viewing position. If you want to
reset the camera to a new viewing angle, it is best to set the camera to be pointing in the right direction and then calling
vtkm::rendering::Camera::ResetToBounds() to adjust the position.

11.6. Manipulating the Camera 189

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 14: Resetting a vtkm::rendering::Camera to be axis
aligned.

1 view.GetCamera().SetPosition(vtkm::make_Vec(0.0, 0.0, 0.0));
2 view.GetCamera().SetLookAt(vtkm::make_Vec(0.0, 0.0, -1.0));
3 view.GetCamera().SetViewUp(vtkm::make_Vec(0.0, 1.0, 0.0));
4 vtkm::Bounds bounds = view.GetScene().GetSpatialBounds();
5 view.GetCamera().ResetToBounds(bounds);

11.7 Interactive Rendering

So far in our description of VTK-m’s rendering capabilities we have talked about doing rendering of fixed scenes.
However, an important use case of scientific visualization is to provide an interactive rendering system to explore data.
In this case, you want to render into a GUI application that lets the user interact manipulate the view. The full design
of a 3D visualization application is well outside the scope of this book, but we discuss in general terms what you need
to plug VTK-m’s rendering into such a system.

In this section we discuss two important concepts regarding interactive rendering. First, we need to write images into
a GUI while they are being rendered. Second, we want to translate user interaction to camera movement.

11.7.1 Rendering Into a GUI

Before being able to show rendering to a user, we need a system rendering context in which to push the images. In
this section we demonstrate the display of images using the OpenGL rendering system, which is common for scientific
visualization applications. That said, you could also use other rendering systems like DirectX or even paste images into
a blank widget.

Creating an OpenGL context varies depending on the OS platform you are using. If you do not already have an appli-
cation you want to integrate with VTK-m’s rendering, you may wish to start with graphics utility API such as GLUT
or GLFW. The process of initializing an OpenGL context is not discussed here.

The process of rendering into an OpenGL context is straightforward. First call vtkm::rendering::View::Paint()
on the vtkm::rendering::View object to do the actual rendering. Second, get the image color data
out of the vtkm::rendering::View’s vtkm::rendering::Canvas object. This is done by calling
vtkm::rendering::Canvas::GetColorBuffer(). This will return a vtkm::cont::ArrayHandle object
containing the image’s pixel color data. (vtkm::cont::ArrayHandle is discussed in detail in Chap-
ter 17 (Basic Array Handles) and subsequent chapters.) A raw pointer can be pulled out of this
vtkm::cont::ArrayHandle by casting it to the vtkm::cont::ArrayHandleBase subclass and calling the
vtkm::cont::ArrayHandleBase::GetReadPointer() method on that. Third, the pixel color data are pasted
into the OpenGL render context. There are multiple ways to do so, but the most straightforward way is to use the
glDrawPixels function provided by OpenGL. Fourth, swap the OpenGL buffers. The method to swap OpenGL
buffers varies by OS platform. The aforementioned graphics libraries GLUT and GLFW each provide a function for
doing so.

Example 15: Rendering a vtkm::rendering::View and pasting the re-
sult to an active OpenGL context.

1 view.Paint();
2

3 // Get the color buffer containing the rendered image.
4 vtkm::cont::ArrayHandle<vtkm::Vec4f_32> colorBuffer =

(continues on next page)

190 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

5 view.GetCanvas().GetColorBuffer();
6

7 // Pull the C array out of the arrayhandle.
8 const void* colorArray =
9 vtkm::cont::ArrayHandleBasic<vtkm::Vec4f_32>(colorBuffer).GetReadPointer();

10

11 // Write the C array to an OpenGL buffer.
12 glDrawPixels((GLint)view.GetCanvas().GetWidth(),
13 (GLint)view.GetCanvas().GetHeight(),
14 GL_RGBA,
15 GL_FLOAT,
16 colorArray);
17

18 // Swap the OpenGL buffers (system dependent).

11.7.2 Camera Movement

When interactively manipulating the camera in a windowing system, the camera is usually moved in response to mouse
movements. Typically, mouse movements are detected through callbacks from the windowing system back to your
application. Once again, the details on how this works depend on your windowing system. The assumption made in
this section is that through the windowing system you will be able to track the x-y pixel location of the mouse cursor at
the beginning of the movement and the end of the movement. Using these two pixel coordinates, as well as the current
width and height of the render space, we can make several typical camera movements.

Common Errors

Pixel coordinates in VTK-m’s rendering system originate in the lower-left corner of the image. However, windowing
systems generally report mouse coordinates with the origin in the upper-left corner. The upshot is that the y coordinates
will have to be reversed when translating mouse coordinates to VTK-m image coordinates. This inverting is present in
all the following examples.

Interactive Rotate

A common and important mode of interaction with 3D views is to allow the user to rotate the object under inspection by
dragging the mouse. To facilitate this type of interactive rotation, vtkm::rendering::Camera provides a convenience
method named vtkm::rendering::Camera::TrackballRotate(). It takes a start and end position of the mouse
on the image and rotates viewpoint as if the user grabbed a point on a sphere centered in the image at the start position
and moved under the end position.

The vtkm::rendering::Camera::TrackballRotate()method is typically called from within a mouse movement
callback. The callback must record the pixel position from the last event and the new pixel position of the mouse.
Those pixel positions must be normalized to the range -1 to 1 where the position (-1,-1) refers to the lower left of the
image and (1,1) refers to the upper right of the image. The following example demonstrates the typical operations used
to establish rotations when dragging the mouse.

Example 16: Interactive rotations through mouse dragging with
vtkm::rendering::Camera::TrackballRotate().

1 void DoMouseRotate(vtkm::rendering::View& view,
2 vtkm::Id mouseStartX,

(continues on next page)

11.7. Interactive Rendering 191

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

3 vtkm::Id mouseStartY,
4 vtkm::Id mouseEndX,
5 vtkm::Id mouseEndY)
6 {
7 vtkm::Id screenWidth = view.GetCanvas().GetWidth();
8 vtkm::Id screenHeight = view.GetCanvas().GetHeight();
9

10 // Convert the mouse position coordinates, given in pixels from 0 to
11 // width/height, to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up, so you have to reverse the y
14 // coordiantes.
15 vtkm::Float32 startX = (2.0f * mouseStartX) / screenWidth - 1.0f;
16 vtkm::Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
17 vtkm::Float32 endX = (2.0f * mouseEndX) / screenWidth - 1.0f;
18 vtkm::Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);
19

20 view.GetCamera().TrackballRotate(startX, startY, endX, endY);
21 }

Interactive Pan

Panning can be performed by calling vtkm::rendering::Camera::Pan() with the translation relative to the width
and height of the canvas. For the translation to track the movement of the mouse cursor, simply scale the pixels the
mouse has traveled by the width and height of the image.

Example 17: Pan the view based on mouse movements.

1 void DoMousePan(vtkm::rendering::View& view,
2 vtkm::Id mouseStartX,
3 vtkm::Id mouseStartY,
4 vtkm::Id mouseEndX,
5 vtkm::Id mouseEndY)
6 {
7 vtkm::Id screenWidth = view.GetCanvas().GetWidth();
8 vtkm::Id screenHeight = view.GetCanvas().GetHeight();
9

10 // Convert the mouse position coordinates, given in pixels from 0 to
11 // width/height, to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up, so you have to reverse the y
14 // coordiantes.
15 vtkm::Float32 startX = (2.0f * mouseStartX) / screenWidth - 1.0f;
16 vtkm::Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
17 vtkm::Float32 endX = (2.0f * mouseEndX) / screenWidth - 1.0f;
18 vtkm::Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);
19

20 vtkm::Float32 deltaX = endX - startX;
21 vtkm::Float32 deltaY = endY - startY;
22

23 view.GetCamera().Pan(deltaX, deltaY);
(continues on next page)

192 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

24 }

Interactive Zoom

Zooming can be performed by calling vtkm::rendering::Camera::Zoom()with a positive or negative zoom factor.
When using vtkm::rendering::Camera::Zoom() to respond to mouse movements, a natural zoom will divide the
distance traveled by the mouse pointer by the width or height of the screen as demonstrated in the following example.

Example 18: Zoom the view based on mouse movements.

1 void DoMouseZoom(vtkm::rendering::View& view, vtkm::Id mouseStartY, vtkm::Id mouseEndY)
2 {
3 vtkm::Id screenHeight = view.GetCanvas().GetHeight();
4

5 // Convert the mouse position coordinates, given in pixels from 0 to height,
6 // to normalized screen coordinates from -1 to 1. Note that y screen
7 // coordinates are usually given from the top down whereas our geometry
8 // transforms are given from bottom up, so you have to reverse the y
9 // coordiantes.

10 vtkm::Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
11 vtkm::Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);
12

13 vtkm::Float32 zoomFactor = endY - startY;
14

15 view.GetCamera().Zoom(zoomFactor);
16 }

11.8 Color Tables

An important feature of VTK-m’s rendering units is the ability to pseudocolor objects based on scalar data. This
technique maps each scalar to a potentially unique color. This mapping from scalars to colors is defined by a
vtkm::cont::ColorTable object. A vtkm::cont::ColorTable can be specified as an optional argument when
constructing a vtkm::rendering::Actor. (Use of vtkm::rendering::Actor is discussed in Section 11.1 (Scenes
and Actors).)

Example 19: Specifying a vtkm::cont::ColorTable for a
vtkm::rendering::Actor.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet(),
2 surfaceData.GetCoordinateSystem(),
3 surfaceData.GetField("RandomPointScalars"),
4 vtkm::cont::ColorTable("inferno"));

class ColorTable : public vtkm::cont::ExecutionObjectBase
Color Table for coloring arbitrary fields.

The vtkm::cont::ColorTable allows for color mapping in RGB or HSV space and uses a piecewise her-
mite functions to allow opacity interpolation that can be piecewise constant, piecewise linear, or somewhere
in-between (a modified piecewise hermite function that squishes the function according to a sharpness parame-
ter).

11.8. Color Tables 193

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

For colors interpolation is handled using a piecewise linear function.

For opacity we define a piecewise function mapping. This mapping allows the addition of control points, and
allows the user to control the function between the control points. A piecewise hermite curve is used between
control points, based on the sharpness and midpoint parameters. A sharpness of 0 yields a piecewise linear
function and a sharpness of 1 yields a piecewise constant function. The midpoint is the normalized distance
between control points at which the curve reaches the median Y value. The midpoint and sharpness values
specified when adding a node are used to control the transition to the next node with the last node’s values being
ignored.

When adding opacity nodes without an explicit midpoint and sharpness we will default to to Midpoint = 0.5
(halfway between the control points) and Sharpness = 0.0 (linear).

ColorTable also contains which ColorSpace should be used for interpolation. The color space is selected with
the vtkm::ColorSpace enumeration. Currently the valid ColorSpaces are:

• RGB

• HSV

• HSVWrap

• Lab

• Diverging

In HSVWrapmode, it will take the shortest path in Hue (going back through 0 if that is the shortest way around the
hue circle) whereas HSV will not go through 0 (in order to match the current functionality of vtkLookupTable).
In Lab mode, it will take the shortest path in the Lab color space with respect to the CIE Delta E 2000 color
distance measure. Diverging is a special mode where colors will pass through white when interpolating between
two saturated colors.

To map a field from a vtkm::cont::DataSet through the color and opacity transfer functions and into a RGB
or RGBA array you should use vtkm::filter::FieldToColor.

Note that modifications of vtkm::cont::ColorTable are not thread safe. You should not modify a
ColorTable simultaneously in 2 or more threads. Also, you should not modify a ColorTable that might be
used in the execution environment. However, the ColorTable can be used in multiple threads and on multiple
devices as long as no modifications are made.

Public Functions

ColorTable(vtkm::cont::ColorTable::Preset preset = vtkm::cont::ColorTable::Preset::Default)
Construct a color table from a preset.

Constructs a color table from a given preset, which might include a NaN color. The alpha table will have 2
entries of alpha = 1.0 with linear interpolation

Note: these are a select set of the presets you can get by providing a string identifier.

explicit ColorTable(const std::string &name)
Construct a color table from a preset color table.

Constructs a color table from a given preset, which might include a NaN color. The alpha table will have 2
entries of alpha = 1.0 with linear interpolation

Note: Names are case insensitive Currently supports the following color tables:

“Default” “Cool to Warm” “Cool to Warm Extended” “Viridis” “Inferno” “Plasma” “Black-Body Radia-
tion” “X Ray” “Green” “Black - Blue - White” “Blue to Orange” “Gray to Red” “Cold and Hot” “Blue -
Green - Orange” “Yellow - Gray - Blue” “Rainbow Uniform” “Jet” “Rainbow Desaturated”

194 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

explicit ColorTable(vtkm::ColorSpace space)
Construct a color table with a zero positions, and an invalid range.

Note: The color table will have 0 entries Note: The alpha table will have 0 entries

ColorTable(const vtkm::Range &range, vtkm::ColorSpace space = vtkm::ColorSpace::Lab)
Construct a color table with a 2 positions.

Note: The color table will have 2 entries of rgb = {1.0,1.0,1.0} Note: The alpha table will have 2 entries of
alpha = 1.0 with linear interpolation

ColorTable(const vtkm::Range &range, const vtkm::Vec3f_32 &rgb1, const vtkm::Vec3f_32 &rgb2,
vtkm::ColorSpace space = vtkm::ColorSpace::Lab)

Construct a color table with 2 positions.

Note: The alpha table will have 2 entries of alpha = 1.0 with linear interpolation

ColorTable(const vtkm::Range &range, const vtkm::Vec4f_32 &rgba1, const vtkm::Vec4f_32 &rgba2,
vtkm::ColorSpace space = vtkm::ColorSpace::Lab)

Construct color and alpha and table with 2 positions.

Note: The alpha table will use linear interpolation

ColorTable(const std::string &name, vtkm::ColorSpace colorSpace, const vtkm::Vec3f_64 &nanColor, const
std::vector<vtkm::Float64> &rgbPoints, const std::vector<vtkm::Float64> &alphaPoints = {0.0,
1.0, 0.5, 0.0, 1.0, 1.0, 0.5, 0.0})

Construct a color table with a list of colors and alphas.

For this version you must also specify a name.

This constructor is mostly used for presets.

bool LoadPreset(const std::string &name)
Load a preset color table.

Removes all existing all values in both color and alpha tables, and will reset the NaN Color if the color table
has that information. Will not modify clamping, below, and above range state.

Note: Names are case insensitive

Currently supports the following color tables: “Default” “Cool to Warm” “Cool to Warm Extended”
“Viridis” “Inferno” “Plasma” “Black-Body Radiation” “X Ray” “Green” “Black - Blue - White” “Blue
to Orange” “Gray to Red” “Cold and Hot” “Blue - Green - Orange” “Yellow - Gray - Blue” “Rainbow
Uniform” “Jet” “Rainbow Desaturated”

ColorTable MakeDeepCopy()
Make a deep copy of the current color table.

The ColorTable is implemented so that all stack based copies are ‘shallow’ copies. This means that they
all alter the same internal instance. But sometimes you need to make an actual fully independent copy.

inline void SetClampingOn()
If clamping is disabled values that lay out side the color table range are colored based on Below and Above
settings.

By default clamping is enabled

void SetBelowRangeColor(const vtkm::Vec3f_32 &c)
Color to use when clamping is disabled for any value that is below the given range.

Default value is {0,0,0}

11.8. Color Tables 195

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

void SetAboveRangeColor(const vtkm::Vec3f_32 &c)
Color to use when clamping is disabled for any value that is above the given range.

Default value is {0,0,0}

void Clear()
Remove all existing values in both color and alpha tables.

Does not remove the clamping, below, and above range state or colors.

void ClearColors()
Remove only color table values.

void ClearAlpha()
Remove only alpha table values.

void ReverseColors()
Reverse the rgb values inside the color table.

void ReverseAlpha()
Reverse the alpha, mid, and sharp values inside the opacity table.

Note: To keep the shape correct the mid and sharp values of the last node are not included in the reversal

const vtkm::Range &GetRange() const
Returns min and max position of all function points.

void RescaleToRange(const vtkm::Range &range)
Rescale the color and opacity transfer functions to match the input range.

vtkm::Int32 AddPoint(vtkm::Float64 x, const vtkm::Vec3f_32 &rgb)
Adds a point to the color function.

If the point already exists, it will be updated to the new value.

Note: rgb values need to be between 0 and 1.0 (inclusive). Return the index of the point (0 based), or -1
osn error.

vtkm::Int32 AddPointHSV(vtkm::Float64 x, const vtkm::Vec3f_32 &hsv)
Adds a point to the color function.

If the point already exists, it will be updated to the new value.

Note: hsv values need to be between 0 and 1.0 (inclusive). Return the index of the point (0 based), or -1 on
error.

vtkm::Int32 AddSegment(vtkm::Float64 x1, const vtkm::Vec3f_32 &rgb1, vtkm::Float64 x2, const
vtkm::Vec3f_32 &rgb2)

Add a line segment to the color function.

All points which lay between x1 and x2 (inclusive) are removed from the function.

Note: rgb1, and rgb2 values need to be between 0 and 1.0 (inclusive). Return the index of the point x1 (0
based), or -1 on error.

vtkm::Int32 AddSegmentHSV(vtkm::Float64 x1, const vtkm::Vec3f_32 &hsv1, vtkm::Float64 x2, const
vtkm::Vec3f_32 &hsv2)

Add a line segment to the color function.

All points which lay between x1 and x2 (inclusive) are removed from the function.

Note: hsv1, and hsv2 values need to be between 0 and 1.0 (inclusive) Return the index of the point x1 (0
based), or -1 on error

196 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

bool GetPoint(vtkm::Int32 index, vtkm::Vec4f_64&) const
Get the location, and rgb information for an existing point in the opacity function.

Note: components 1-3 are rgb and will have values between 0 and 1.0 (inclusive) Return the index of the
point (0 based), or -1 on error.

vtkm::Int32 UpdatePoint(vtkm::Int32 index, const vtkm::Vec4f_64&)
Update the location, and rgb information for an existing point in the color function.

If the location value for the index is modified the point is removed from the function and re-inserted in the
proper sorted location.

Note: components 1-3 are rgb and must have values between 0 and 1.0 (inclusive). Return the new index
of the updated point (0 based), or -1 on error.

bool RemovePoint(vtkm::Float64 x)
Remove the Color function point that exists at exactly x.

Return true if the point x exists and has been removed

bool RemovePoint(vtkm::Int32 index)
Remove the Color function point n.

Return true if n >= 0 && n < GetNumberOfPoints

vtkm::Int32 GetNumberOfPoints() const
Returns the number of points in the color function.

inline vtkm::Int32 AddPointAlpha(vtkm::Float64 x, vtkm::Float32 alpha)
Adds a point to the opacity function.

If the point already exists, it will be updated to the new value. Uses a midpoint of 0.5 (halfway between the
control points) and sharpness of 0.0 (linear).

Note: alpha needs to be a value between 0 and 1.0 (inclusive). Return the index of the point (0 based), or
-1 on error.

vtkm::Int32 AddPointAlpha(vtkm::Float64 x, vtkm::Float32 alpha, vtkm::Float32 midpoint, vtkm::Float32
sharpness)

Adds a point to the opacity function.

If the point already exists, it will be updated to the new value.

Note: alpha, midpoint, and sharpness values need to be between 0 and 1.0 (inclusive) Return the index of
the point (0 based), or -1 on error.

inline vtkm::Int32 AddSegmentAlpha(vtkm::Float64 x1, vtkm::Float32 alpha1, vtkm::Float64 x2,
vtkm::Float32 alpha2)

Add a line segment to the opacity function.

All points which lay between x1 and x2 (inclusive) are removed from the function. Uses a midpoint of 0.5
(halfway between the control points) and sharpness of 0.0 (linear).

Note: alpha values need to be between 0 and 1.0 (inclusive) Return the index of the point x1 (0 based), or
-1 on error

vtkm::Int32 AddSegmentAlpha(vtkm::Float64 x1, vtkm::Float32 alpha1, vtkm::Float64 x2, vtkm::Float32
alpha2, const vtkm::Vec2f_32 &mid_sharp1, const vtkm::Vec2f_32
&mid_sharp2)

Add a line segment to the opacity function.

All points which lay between x1 and x2 (inclusive) are removed from the function.

11.8. Color Tables 197

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Note: alpha, midpoint, and sharpness values need to be between 0 and 1.0 (inclusive) Return the index of
the point x1 (0 based), or -1 on error

bool GetPointAlpha(vtkm::Int32 index, vtkm::Vec4f_64&) const
Get the location, alpha, midpoint and sharpness information for an existing point in the opacity function.

Note: alpha, midpoint, and sharpness values all will be between 0 and 1.0 (inclusive) Return the index of
the point (0 based), or -1 on error.

vtkm::Int32 UpdatePointAlpha(vtkm::Int32 index, const vtkm::Vec4f_64&)
Update the location, alpha, midpoint and sharpness information for an existing point in the opacity function.

If the location value for the index is modified the point is removed from the function and re-inserted in the
proper sorted location

Note: alpha, midpoint, and sharpness values need to be between 0 and 1.0 (inclusive) Return the new index
of the updated point (0 based), or -1 on error.

bool RemovePointAlpha(vtkm::Float64 x)
Remove the Opacity function point that exists at exactly x.

Return true if the point x exists and has been removed

bool RemovePointAlpha(vtkm::Int32 index)
Remove the Opacity function point n.

Return true if n >= 0 && n < GetNumberOfPointsAlpha

vtkm::Int32 GetNumberOfPointsAlpha() const
Returns the number of points in the alpha function.

bool FillColorTableFromDataPointer(vtkm::Int32 n, const vtkm::Float64 *ptr)
Fill the Color table from a vtkm::Float64 pointer.

The vtkm::Float64 pointer is required to have the layout out of [X1, R1, G1, B1, X2, R2, G2, B2, . . . , Xn,
Rn, Gn, Bn] where n is the number of nodes. This will remove any existing color control points.

Note: n represents the length of the array, so (n/4 == number of control points)

Note: This is provided as a interoperability method with VTK Will return false and not modify anything if
n is <= 0 or ptr == nullptr

bool FillColorTableFromDataPointer(vtkm::Int32 n, const vtkm::Float32 *ptr)
Fill the Color table from a vtkm::Float32 pointer.

The vtkm::Float64 pointer is required to have the layout out of [X1, R1, G1, B1, X2, R2, G2, B2, . . . , Xn,
Rn, Gn, Bn] where n is the number of nodes. This will remove any existing color control points.

Note: n represents the length of the array, so (n/4 == number of control points)

Note: This is provided as a interoperability method with VTK Will return false and not modify anything if
n is <= 0 or ptr == nullptr

bool FillOpacityTableFromDataPointer(vtkm::Int32 n, const vtkm::Float64 *ptr)
Fill the Opacity table from a vtkm::Float64 pointer.

The vtkm::Float64 pointer is required to have the layout out of [X1, A1, M1, S1, X2, A2, M2, S2, . . . ,
Xn, An, Mn, Sn] where n is the number of nodes. The Xi values represent the value to map, the Ai values
represent alpha (opacity) value, the Mi values represent midpoints, and the Si values represent sharpness.
Use 0.5 for midpoint and 0.0 for sharpness to have linear interpolation of the alpha.

This will remove any existing opacity control points.

198 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Note: n represents the length of the array, so (n/4 == number of control points)

Will return false and not modify anything if n is <= 0 or ptr == nullptr

bool FillOpacityTableFromDataPointer(vtkm::Int32 n, const vtkm::Float32 *ptr)
Fill the Opacity table from a vtkm::Float32 pointer.

The vtkm::Float32 pointer is required to have the layout out of [X1, A1, M1, S1, X2, A2, M2, S2, . . . ,
Xn, An, Mn, Sn] where n is the number of nodes. The Xi values represent the value to map, the Ai values
represent alpha (opacity) value, the Mi values represent midpoints, and the Si values represent sharpness.
Use 0.5 for midpoint and 0.0 for sharpness to have linear interpolation of the alpha.

This will remove any existing opacity control points.

Note: n represents the length of the array, so (n/4 == number of control points)

Will return false and not modify anything if n is <= 0 or ptr == nullptr

bool Sample(vtkm::Int32 numSamples, vtkm::cont::ColorTableSamplesRGBA &samples, vtkm::Float64
tolerance = 0.002) const

generate RGB colors using regular spaced samples along the range.

Will use the current range of the color table to generate evenly spaced values using either vtkm::Float32
or vtkm::Float64 space. Will use vtkm::Float32 space when the difference between the vtkm::Float32 and
vtkm::Float64 values when the range is within vtkm::Float32 space and the following are within a tolerance:

• (max-min) / numSamples

• ((max-min) / numSamples) * numSamples

Note: This will return false if the number of samples is less than 2

bool Sample(vtkm::Int32 numSamples, vtkm::cont::ColorTableSamplesRGB &samples, vtkm::Float64
tolerance = 0.002) const

generate a sample lookup table using regular spaced samples along the range.

Will use the current range of the color table to generate evenly spaced values using either vtkm::Float32
or vtkm::Float64 space. Will use vtkm::Float32 space when the difference between the vtkm::Float32 and
vtkm::Float64 values when the range is within vtkm::Float32 space and the following are within a tolerance:

• (max-min) / numSamples

• ((max-min) / numSamples) * numSamples

Note: This will return false if the number of samples is less than 2

bool Sample(vtkm::Int32 numSamples, vtkm::cont::ArrayHandle<vtkm::Vec4ui_8> &colors, vtkm::Float64
tolerance = 0.002) const

generate RGBA colors using regular spaced samples along the range.

Will use the current range of the color table to generate evenly spaced values using either vtkm::Float32
or vtkm::Float64 space. Will use vtkm::Float32 space when the difference between the vtkm::Float32 and
vtkm::Float64 values when the range is within vtkm::Float32 space and the following are within a tolerance:

• (max-min) / numSamples

• ((max-min) / numSamples) * numSamples

Note: This will return false if the number of samples is less than 2

11.8. Color Tables 199

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

bool Sample(vtkm::Int32 numSamples, vtkm::cont::ArrayHandle<vtkm::Vec3ui_8> &colors, vtkm::Float64
tolerance = 0.002) const

generate RGB colors using regular spaced samples along the range.

Will use the current range of the color table to generate evenly spaced values using either vtkm::Float32
or vtkm::Float64 space. Will use vtkm::Float32 space when the difference between the vtkm::Float32 and
vtkm::Float64 values when the range is within vtkm::Float32 space and the following are within a tolerance:

• (max-min) / numSamples

• ((max-min) / numSamples) * numSamples

Note: This will return false if the number of samples is less than 2

vtkm::exec::ColorTable PrepareForExecution(vtkm::cont::DeviceAdapterId deviceId, vtkm::cont::Token
&token) const

returns a virtual object pointer of the exec color table

This pointer is only valid as long as the ColorTable is unmodified

vtkm::Id GetModifiedCount() const
Returns the modified count for changes of the color table.

The ModifiedCount of the color table starts at 1 and gets incremented every time a change is made to the
color table. The modified count allows consumers of a shared color table to keep track if the color table
has been modified since the last time they used it. This is important for consumers that need to sample the
color table. You only want to resample the color table if changes have been made.

Public Static Functions

static std::set<std::string> GetPresets()
Returns the name of all preset color tables.

This list will include all presets defined in vtkm::cont::ColorTable::Preset and could include extras as well.

The easiest way to create a vtkm::cont::ColorTable is to provide the name of one of the many predefined sets of
color provided by VTK-m. A list of all available predefined color tables is provided below.

• Viridis Matplotlib Virdis, which is designed to have perceptual uniformity, ac-
cessibility to color blind viewers, and good conversion to black and white. This is the default color map.

• Cool to Warm A color table designed to be perceptually even, to work well on
shaded 3D surfaces, and to generally perform well across many uses.

• Cool to Warm Extended This colormap is an expansion on cool to warm that
moves through a wider range of hue and saturation. Useful if you are looking for a greater level of detail, but the
darker colors at the end might interfere with 3D surfaces.

• Inferno Matplotlib Inferno, which is designed to have perceptual uniformity, ac-
cessibility to color blind viewers, and good conversion to black and white.

• PlasmaMatplotlib Plasma, which is designed to have perceptual uniformity, acces-
sibility to color blind viewers, and good conversion to black and white.

• Black Body Radiation The colors are inspired by the wavelengths of light from
black body radiation. The actual colors used are designed to be perceptually uniform.

200 Chapter 11. Rendering

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

• X Ray Greyscale colormap useful for making volume renderings similar to what
you would expect in an x-ray.

• Green A sequential color map of green varied by saturation.

• Black - Blue - White A sequential color map from black to blue to white.

• Blue to OrangeA double-ended (diverging) color table that goes from dark blues
to a neutral white and then a dark orange at the other end.

• Gray to Red A double-ended (diverging) color table with black/gray at the low
end and orange/red at the high end.

• Cold and HotA double-ended color map with a black middle color and diverging
values to either side. Colors go from red to yellow on the positive side and through blue on the negative side.

• Blue - Green - Orange A three-part color map with blue at the low end, green
in the middle, and orange at the high end.

• Yellow - Gray - Blue A three-part color map with yellow at the low end, gray
in the middle, and blue at the high end.

• Rainbow Uniform A color table that spans the hues of a rainbow. This color table
modifies the hues to make them more perceptually uniform than the raw color wavelengths.

• JetA rainbow color table that adds some darkness for greater perceptual resolution.

• Rainbow DesaturatedBasic rainbow colors with periodic dark points to increase
the local discriminability.

11.8. Color Tables 201

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

202 Chapter 11. Rendering

CHAPTER

TWELVE

ERROR HANDLING

VTK-m contains several mechanisms for checking and reporting error conditions.

12.1 Runtime Error Exceptions

VTK-m uses exceptions to report errors. All exceptions thrown by VTK-m will be a subclass of vtkm::cont::Error.
For simple error reporting, it is possible to simply catch a vtkm::cont::Error and report the error message string
reported by the vtkm::cont::Error::GetMessage() method.

Example 1: Simple error reporting.

1 int main(int argc, char** argv)
2 {
3 try
4 {
5 // Do something cool with VTK-m
6 // ...
7 }
8 catch (const vtkm::cont::Error& error)
9 {

10 std::cout << error.GetMessage() << std::endl;
11 return 1;
12 }
13 return 0;
14 }

class Error : public std::exception
The superclass of all exceptions thrown by any VTKm function or method.

Subclassed by vtkm::cont::ErrorBadAllocation, vtkm::cont::ErrorBadDevice, vtkm::cont::ErrorBadType,
vtkm::cont::ErrorBadValue, vtkm::cont::ErrorExecution, vtkm::cont::ErrorFilterExecution,
vtkm::cont::ErrorInternal, vtkm::cont::ErrorUserAbort, vtkm::cont::cuda::ErrorCuda, vtkm::io::ErrorIO

203

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline const std::string &GetMessage() const
Returns a message describing what caused the error.

inline const std::string &GetStackTrace() const
Provides a stack trace to the location where this error was thrown.

inline const char *what() const noexcept override
Returns the message for the error and the stack trace for it.

This method is provided for std::exception compatibility.

inline bool GetIsDeviceIndependent() const
Returns true if this exception is device independent.

For exceptions that are not device independent, vtkm::TryExecute, for example, may try executing the
code on other available devices.

There are several subclasses to vtkm::cont::Error. The specific subclass gives an indication of the type of error
that occurred when the exception was thrown. Catching one of these subclasses may help a program better recover
from errors.

class ErrorBadAllocation : public vtkm::cont::Error
This class is thrown when VTK-m attempts to manipulate memory that it should not.

class ErrorBadDevice : public vtkm::cont::Error
This class is thrown when VTK-m performs an operation that is not supported on the current device.

class ErrorBadType : public vtkm::cont::Error
This class is thrown when VTK-m encounters data of a type that is incompatible with the current operation.

class ErrorBadValue : public vtkm::cont::Error
This class is thrown when a VTKm function or method encounters an invalid value that inhibits progress.

class ErrorExecution : public vtkm::cont::Error
This class is thrown in the control environment whenever an error occurs in the execution environment.

class ErrorFilterExecution : public vtkm::cont::Error
This class is primarily intended to filters to throw in the control environment to indicate an execution failure due
to misconfiguration e.g.

incorrect parameters, etc. This is a device independent exception i.e. when thrown, unlike most other exceptions,
VTK-m will not try to re-execute the filter on another available device.

class ErrorInternal : public vtkm::cont::Error
This class is thrown when VTKm detects an internal state that should never be reached.

This error usually indicates a bug in vtkm or, at best, VTKm failed to detect an invalid input it should have.

class ErrorUserAbort : public vtkm::cont::Error
This class is thrown when vtk-m detects a request for aborting execution in the current thread.

204 Chapter 12. Error Handling

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class ErrorIO : public vtkm::cont::Error
This class is thrown when VTK-m encounters an error with the file system.

This can happen if there is a problem with reading or writing a file such as a bad filename.

12.2 Asserting Conditions

In addition to the aforementioned error signaling, the vtkm/Assert.h header file defines a macro named
VTKM_ASSERT. This macro behaves the same as the POSIX assert macro. It takes a single argument that is a con-
dition that is expected to be true. If it is not true, the program is halted and a message is printed. Asserts are useful
debugging tools to ensure that software is behaving and being used as expected.

VTKM_ASSERT(condition)
Asserts that condition resolves to true.

If condition is false, then a diagnostic message is outputted and execution is terminated. The behavior is essen-
tially the same as the POSIX assert macro, but is wrapped for added portability.

Like the POSIX assert macro, the check will be removed when compiling in non-debug mode (specifically when
NDEBUG is defined), so be prepared for the possibility that the condition is never evaluated.

The VTKM_NO_ASSERT cmake and preprocessor option allows debugging builds to remove assertions for
performance reasons.

Example 2: Using VTKM_ASSERT.

1 template<typename T>
2 VTKM_CONT T GetArrayValue(vtkm::cont::ArrayHandle<T> arrayHandle, vtkm::Id index)
3 {
4 VTKM_ASSERT(index >= 0);
5 VTKM_ASSERT(index < arrayHandle.GetNumberOfValues());

Did You Know?

Like the POSIX assert, if the NDEBUG macro is defined, then VTKM_ASSERT will become an empty expression. Typ-
ically NDEBUG is defined with a compiler flag (like -DNDEBUG) for release builds to better optimize the code. CMake
will automatically add this flag for release builds.

Common Errors

A helpful warning provided by many compilers alerts you of unused variables. (This warning is commonly enabled on
VTK-m regression test nightly builds.) If a function argument is used only in a VTKM_ASSERT, then it will be required
for debug builds and be unused in release builds. To get around this problem, add a statement to the function of the
form (void)variableName;. This statement will have no effect on the code generated but will suppress the warning
for release builds.

12.2. Asserting Conditions 205

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

12.3 Compile Time Checks

Because VTK-m makes heavy use of C++ templates, it is possible that these templates could be used with inappropriate
types in the arguments. Using an unexpected type in a template can lead to very confusing errors, so it is better to catch
such problems as early as possible. The VTKM_STATIC_ASSERTmacro, defined in vtkm/StaticAssert.hmakes this
possible. This macro takes a constant expression that can be evaluated at compile time and verifies that the result is
true.

In the following example, VTKM_STATIC_ASSERT and its sister macro VTKM_STATIC_ASSERT_MSG, which allows you
to give a descriptive message for the failure, are used to implement checks on a templated function that is designed to
work on any scalar type that is represented by 32 or more bits.

Example 3: Using VTKM_STATIC_ASSERT.

1 template<typename T>
2 VTKM_EXEC_CONT void MyMathFunction(T& value)
3 {
4 VTKM_STATIC_ASSERT((std::is_same<typename vtkm::TypeTraits<T>::DimensionalityTag,
5 vtkm::TypeTraitsScalarTag>::value));
6

7 VTKM_STATIC_ASSERT_MSG(sizeof(T) >= 4,
8 "MyMathFunction needs types with at least 32 bits.");

Did You Know?

In addition to the several trait template classes provided by VTK-m to introspect C++ types, the C++ standard
type_traits header file contains several helpful templates for general queries on types. Example 3 demonstrates
the use of one such template: std::is_same.

Common Errors

Many templates used to introspect types resolve to the tags std::true_type and std::false_type rather than the
constant values true and false that VTKM_STATIC_ASSERT expects. The std::true_type and std::false_type
tags can be converted to the Boolean literal by adding ::value to the end of them. Failing to do so will cause
VTKM_STATIC_ASSERT to behave incorrectly. Example 3 demonstrates getting the Boolean literal from the result
of std::is_same.

206 Chapter 12. Error Handling

CHAPTER

THIRTEEN

MANAGING DEVICES

Multiple vendors vie to provide accelerator-type processors. VTK-m endeavors to support as many such architectures
as possible. Each device and device technology requires some level of code specialization, and that specialization is
encapsulated in a unit called a device adapter.

So far in Part II (Using VTK-m) we have been writing code that runs on a local serial CPU. In those examples where
we run a filter, VTK-m is launching parallel execution in the execution environment. Internally VTK-m uses a device
adapter to manage this execution.

A build of VTK-m generally supports multiple device adapters. In this chapter we describe how to represent and
manage devices.

13.1 Device Adapter Tag

A device adapter is identified by a device adapter tag. This tag, which is simply an empty struct type, is used as the
template parameter for several classes in the VTK-m control environment and causes these classes to direct their work
to a particular device. The following device adapter tags are available in VTK-m.

struct DeviceAdapterTagSerial : public vtkm::cont::DeviceAdapterId
Tag for a device adapter that performs all computation on the same single thread as the control environment.

This device is useful for debugging. This device is always available. This tag is defined in vtkm/cont/
DeviceAdapterSerial.h.

struct DeviceAdapterTagCuda : public vtkm::cont::DeviceAdapterId
Tag for a device adapter that uses a CUDA capable GPU device.

For this device to work, VTK-m must be configured to use CUDA and the code must be compiled by the CUDA
nvcc compiler. This tag is defined in vtkm/cont/cuda/DeviceAdapterCuda.h.

struct DeviceAdapterTagOpenMP : public vtkm::cont::DeviceAdapterId
Tag for a device adapter that uses OpenMP compiler extensions to run algorithms on multiple threads.

For this device to work, VTK-m must be configured to use OpenMP and the code must be compiled with a
compiler that supports OpenMP pragmas. This tag is defined in vtkm/cont/openmp/DeviceAdapterOpenMP.
h.

struct DeviceAdapterTagTBB : public vtkm::cont::DeviceAdapterId
Tag for a device adapter that uses the Intel Threading Building Blocks library to run algorithms on multiple
threads.

207

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

For this device to work, VTK-m must be configured to use TBB and the executable must be linked to the TBB
library. This tag is defined in vtkm/cont/tbb/DeviceAdapterTBB.h.

struct DeviceAdapterTagKokkos : public vtkm::cont::DeviceAdapterId
Tag for a device adapter that uses the Kokkos library to run algorithms in parallel.

For this device to work, VTK-m must be configured to use Kokkos and the executable must be linked to the
Kokkos libraries. VTK-m will use the default execution space of the provided kokkos library build. This tag is
defined in vtkm/cont/kokkos/DeviceAdapterKokkos.h.

The following example uses the tag for the Kokkos device adapter to specify a specific device for VTK-m to use.
(Details on specifying devices in VTK-m is provided in Section 13.4 (Specifying Devices).)

Example 1: Specifying a device using a device adapter tag.

1 vtkm::cont::ScopedRuntimeDeviceTracker(vtkm::cont::DeviceAdapterTagKokkos{});

For classes and methods that have a template argument that is expected to be a device adapter tag, the tag type can be
checked with the VTKM_IS_DEVICE_ADAPTER_TAG macro to verify the type is a valid device adapter tag. It is good
practice to check unknown types with this macro to prevent further unexpected errors.

13.2 Device Adapter Id

Using a device adapter tag directly means that the type of device needs to be known at compile
time. To store a device adapter type at run time, one can instead use vtkm::cont::DeviceAdapterId .
vtkm::cont::DeviceAdapterId is a superclass to all the device adapter tags, and any device adapter tag can
be “stored” in a vtkm::cont::DeviceAdapterId . Thus, it is more common for functions and classes to use
vtkm::cont::DeviceAdapterId then to try to track a specific device with templated code.

struct DeviceAdapterId
An object used to specify a device.

vtkm::cont::DeviceAdapterId can be used to specify a device to use when executing some code.
Each DeviceAdapterTag object inherits from vtkm::cont::DeviceAdapterId . Functions can accept a
vtkm::cont::DeviceAdapterId object rather than a templated tag to select a device adapter at runtime.

Subclassed by vtkm::cont::DeviceAdapterTagAny, vtkm::cont::DeviceAdapterTagCuda,
vtkm::cont::DeviceAdapterTagKokkos, vtkm::cont::DeviceAdapterTagOpenMP,
vtkm::cont::DeviceAdapterTagSerial, vtkm::cont::DeviceAdapterTagTBB, vtkm::cont::DeviceAdapterTagUndefined

Public Functions

inline constexpr bool IsValueValid() const
Return whether this object represents a valid type of device.

This method will return true if the id represents a specific, valid device. It will return true even if the device
is disabled in by the runtime tracker or if the device is not supported by the VTK-m build configuration.

It should be noted that this method return false for tags that are not specific devices. This includes
vtkm::cont::DeviceAdapterTagAny and vtkm::cont::DeviceAdapterTagUndefined .

inline constexpr vtkm::Int8 GetValue() const
Returns the numeric value of the index.

208 Chapter 13. Managing Devices

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

DeviceAdapterNameType GetName() const
Return a name representing the device.

The string returned from this method is stored in a type named vtkm::cont::DeviceAdapterNameType,
which is currently aliased to std::string. The device adapter name is useful for printing information
about a device being used.

Did You Know?

As a cheat, all device adapter tags actually inherit from the vtkm::cont::DeviceAdapterId class. Thus, all of these
methods can be called directly on a device adapter tag.

Common Errors

Just because the vtkm::cont::DeviceAdapterId::IsValueValid() returns true that does not necessarily mean
that this device is available to be run on. It simply means that the device is implemented in VTK-m. However, that
device might not be compiled, or that device might not be available on the current running system, or that device might
not be enabled. Use the device runtime tracker described in Section 13.3 (Runtime Device Tracker) to determine if a
particular device can actually be used.

In addition to the provided device adapter tags listed previously, a vtkm::cont::DeviceAdapterId can store some
special device adapter tags that do not directly specify a specific device.

struct DeviceAdapterTagAny : public vtkm::cont::DeviceAdapterId
Tag for a device adapter used to specify that any device may be used for an operation.

In practice this is limited to devices that are currently available.

struct DeviceAdapterTagUndefined : public vtkm::cont::DeviceAdapterId
Tag for a device adapter used to avoid specifying a device.

Useful as a placeholder when a device can be specified but none is given.

Did You Know?

Any device adapter tag can be used where a device adapter id is expected. Thus, you can use a device adapter tag
whenever you want to specify a particular device and pass that to any method expecting a device id. Likewise, it is
usually more convenient for classes and methods to manage device adapter ids rather than device adapter tag.

13.3 Runtime Device Tracker

It is often the case that you are agnostic about what device VTK-m algorithms run so long as they complete correctly
and as fast as possible. Thus, rather than directly specify a device adapter, you would like VTK-m to try using the best
available device, and if that does not work try a different device. Because of this, there are many features in VTK-m
that behave this way. For example, you may have noticed that running filters, as in the examples of Chapter 9 (Running
Filters), you do not need to specify a device; they choose a device for you.

However, even though we often would like VTK-m to choose a device for us, we still need a way to manage device
preferences. VTK-m also needs a mechanism to record runtime information about what devices are available so that
it does not have to continually try (and fail) to use devices that are not available at runtime. These needs are met

13.3. Runtime Device Tracker 209

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

with the vtkm::cont::RuntimeDeviceTracker class. vtkm::cont::RuntimeDeviceTracker maintains infor-
mation about which devices can and should be run on. VTK-m maintains a vtkm::cont::RuntimeDeviceTracker
for each thread your code is operating on. To get the runtime device for the current thread, use the
vtkm::cont::GetRuntimeDeviceTracker() method.

vtkm::cont::RuntimeDeviceTracker &vtkm::cont::GetRuntimeDeviceTracker()
Get the RuntimeDeviceTracker for the current thread.

Many features in VTK-m will attempt to run algorithms on the “best

available device.” This often is determined at runtime as failures in one device are recorded and that device is
disabled. To prevent having to check over and over again, VTK-m uses per thread runtime device tracker so that
these choices are marked and shared.

class RuntimeDeviceTracker
RuntimeDeviceTracker is the central location for determining which device adapter will be active for algorithm
execution.

Many features in VTK-m will attempt to run algorithms on the “best

available device.” This generally is determined at runtime as some backends require specific hardware, or failures
in one device are recorded and that device is disabled.

While vtkm::cont::RunimeDeviceInformation reports on the existence of a device being supported, this tracks
on a per-thread basis when worklets fail, why the fail, and will update the list of valid runtime devices based on
that information.

Subclassed by vtkm::cont::ScopedRuntimeDeviceTracker

Public Functions

bool CanRunOn(DeviceAdapterId deviceId) const
Returns true if the given device adapter is supported on the current machine.

inline void ReportAllocationFailure(vtkm::cont::DeviceAdapterId deviceId, const
vtkm::cont::ErrorBadAllocation&)

Report a failure to allocate memory on a device, this will flag the device as being unusable for all future
invocations.

inline void ReportBadDeviceFailure(vtkm::cont::DeviceAdapterId deviceId, const
vtkm::cont::ErrorBadDevice&)

Report a ErrorBadDevice failure and flag the device as unusable.

void ResetDevice(vtkm::cont::DeviceAdapterId deviceId)
Reset the tracker for the given device.

This will discard any updates caused by reported failures. Passing DeviceAdapterTagAny to this will reset
all devices (same as Reset()).

void Reset()
Reset the tracker to its default state for default devices.

Will discard any updates caused by reported failures.

210 Chapter 13. Managing Devices

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

void DisableDevice(DeviceAdapterId deviceId)
Disable the given device.

The main intention of RuntimeDeviceTracker is to keep track of what devices are working for VTK-m.
However, it can also be used to turn devices on and off. Use this method to disable (turn off) a given device.
Use ResetDevice() to turn the device back on (if it is supported).

Passing DeviceAdapterTagAny to this will disable all devices.

void ForceDevice(DeviceAdapterId deviceId)
Disable all devices except the specified one.

The main intention of RuntimeDeviceTracker is to keep track of what devices are working for VTK-m.
However, it can also be used to turn devices on and off. Use this method to disable all devices except one to
effectively force VTK-m to use that device. Either pass the DeviceAdapterTagAny to this function or call
Reset() to restore all devices to their default state.

This method will throw a vtkm::cont::ErrorBadValue if the given device does not exist on the system.

bool GetThreadFriendlyMemAlloc() const
Get/Set use of thread-friendly memory allocation for a device.

void SetThreadFriendlyMemAlloc(bool state)
Get/Set use of thread-friendly memory allocation for a device.

void CopyStateFrom(const vtkm::cont::RuntimeDeviceTracker &tracker)
Copies the state from the given device.

This is a convenient way to allow the RuntimeDeviceTracker on one thread copy the behavior from
another thread.

void SetAbortChecker(const std::function<bool()> &func)
Set/Clear the abort checker functor.

If set the abort checker functor is called by vtkm::cont::TryExecute() before scheduling a task on a
device from the associated the thread. If the functor returns true, an exception is thrown.

void ClearAbortChecker()
Set/Clear the abort checker functor.

If set the abort checker functor is called by vtkm::cont::TryExecute() before scheduling a task on a
device from the associated the thread. If the functor returns true, an exception is thrown.

void PrintSummary(std::ostream &out) const
Produce a human-readable report on the state of the runtime device tracker.

13.4 Specifying Devices

A vtkm::cont::RuntimeDeviceTracker can be used to specify which devices to consider for a particular operation.
However, a better way to specify devices is to use the vtkm::cont::ScopedRuntimeDeviceTracker class. When
a vtkm::cont::ScopedRuntimeDeviceTracker is constructed, it specifies a new set of devices for VTK-m to use.
When the vtkm::cont::ScopedRuntimeDeviceTracker is destroyed as it leaves scope, it restores VTK-m’s devices
to those that existed when it was created.

class ScopedRuntimeDeviceTracker : public vtkm::cont::RuntimeDeviceTracker
A class to create a scoped runtime device tracker object.

13.4. Specifying Devices 211

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

This object captures the state of the per-thread device tracker and will revert any changes applied during its
lifetime on destruction.

Unnamed Group

ScopedRuntimeDeviceTracker(const vtkm::cont::RuntimeDeviceTracker &tracker =
GetRuntimeDeviceTracker())

Construct a ScopedRuntimeDeviceTracker associated with the thread, associated with the provided tracker
(defaults to current thread’s tracker).

Any modifications to the ScopedRuntimeDeviceTracker will effect what ever thread the tracker is asso-
ciated with, which might not be the thread on which the ScopedRuntimeDeviceTracker was constructed.

Constructors are not thread safe

ScopedRuntimeDeviceTracker(vtkm::cont::DeviceAdapterId device, RuntimeDeviceTrackerMode mode =
RuntimeDeviceTrackerMode::Force, const
vtkm::cont::RuntimeDeviceTracker &tracker =
GetRuntimeDeviceTracker())

Use this constructor to modify the state of the device adapters associated with the provided tracker.

Use mode with device as follows:

‘Force’ (default)

• Force-Enable the provided single device adapter

• Force-Enable all device adapters when using vtkm::cont::DeviceAdaterTagAny ‘Enable’

• Enable the provided single device adapter if it was previously disabled

• Enable all device adapters that are currently disabled when using vtkm::cont::DeviceAdaterTagAny
‘Disable’

• Disable the provided single device adapter

• Disable all device adapters when using vtkm::cont::DeviceAdaterTagAny

ScopedRuntimeDeviceTracker(const std::function<bool()> &abortChecker, const
vtkm::cont::RuntimeDeviceTracker &tracker =
GetRuntimeDeviceTracker())

Use this constructor to set the abort checker functor for the provided tracker.

~ScopedRuntimeDeviceTracker()

Destructor is not thread safe.

The following example demonstrates how the vtkm::cont::ScopedRuntimeDeviceTracker is used to force the
VTK-m operations that happen within a function to operate exclusively with the Kokkos device.

Example 2: Restricting which devices VTK-m uses per thread.

1 void ChangeDefaultRuntime()
2 {
3 std::cout << "Checking changing default runtime." << std::endl;
4

5 vtkm::cont::ScopedRuntimeDeviceTracker(vtkm::cont::DeviceAdapterTagKokkos{});
6

7 // VTK-m operations limited to Kokkos devices here...
8

(continues on next page)

212 Chapter 13. Managing Devices

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

9 // Devices restored as we leave scope.
10 }

In the previous example we forced VTK-m to use the Kokkos device. This is the default behavior of
vtkm::cont::ScopedRuntimeDeviceTracker, but the constructor takes an optional second argument that is a value
in the vtkm::cont::RuntimeDeviceTrackerMode to specify how modify the current device adapter list.

enum class vtkm::cont::RuntimeDeviceTrackerMode
Identifier used to specify whether to enable or disable a particular device.

Values:

enumerator Force
Replaces the current list of devices to try with the device specified.

This has the effect of forcing VTK-m to use the provided device. This is the default behavior for
vtkm::cont::ScopedRuntimeDeviceTracker.

enumerator Enable
Adds the provided device adapter to the list of devices to try.

enumerator Disable
Removes the provided device adapter from the list of devices to try.

As a motivating example, let us say that we want to perform a deep copy of an array (described in Section 17.2
(Deep Array Copies)). However, we do not want to do the copy on a Kokkos device because we happen to know
the data is not on that device and we do not want to spend the time to transfer the data to that device. We can use a
vtkm::cont::ScopedRuntimeDeviceTracker to temporarily disable the Kokkos device for this operation.

Example 3: Disabling a device with
vtkm::cont::RuntimeDeviceTracker.

1 vtkm::cont::ScopedRuntimeDeviceTracker tracker(
2 vtkm::cont::DeviceAdapterTagKokkos(), vtkm::cont::RuntimeDeviceTrackerMode::Disable);
3

4 vtkm::cont::ArrayCopy(srcArray, destArray);

13.4. Specifying Devices 213

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

214 Chapter 13. Managing Devices

CHAPTER

FOURTEEN

TIMERS

It is often the case that you need to measure the time it takes for an operation to happen. This could be for performing
measurements for algorithm study or it could be to dynamically adjust scheduling.

Performing timing in a multi-threaded environment can be tricky because operations happen asynchronously. To ensure
that accurate timings can be made, VTK-m provides a vtkm::cont::Timer class to provide an accurate measurement
of operations that happen on devices that VTK-m can use. By default, vtkm::cont::Timer will time operations on
all possible devices.

The timer is started by calling the vtkm::cont::Timer::Start() method. The timer can subsequently be stopped
by calling vtkm::cont::Timer::Stop(). The time elapsed between calls to vtkm::cont::Timer::Start()
and vtkm::cont::Timer::Stop() (or the current time if vtkm::cont::Timer::Stop() was not called)
can be retrieved with a call to the vtkm::cont::Timer::GetElapsedTime() method. Subsequently calling
vtkm::cont::Timer::Start() again will restart the timer.

Example 1: Using vtkm::cont::Timer.

1 vtkm::filter::field_transform::PointElevation elevationFilter;
2 elevationFilter.SetUseCoordinateSystemAsField(true);
3 elevationFilter.SetOutputFieldName("elevation");
4

5 vtkm::cont::Timer timer;
6

7 timer.Start();
8

9 vtkm::cont::DataSet result = elevationFilter.Execute(dataSet);
10

11 // This code makes sure data is pulled back to the host in a host/device
12 // architecture.
13 vtkm::cont::ArrayHandle<vtkm::Float64> outArray;
14 result.GetField("elevation").GetData().AsArrayHandle(outArray);
15 outArray.SyncControlArray();
16

17 timer.Stop();
18

19 vtkm::Float64 elapsedTime = timer.GetElapsedTime();
20

21 std::cout << "Time to run: " << elapsedTime << std::endl;

Common Errors

Some device require data to be copied between the host CPU and the device. In this case you might want to measure

215

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

the time to copy data back to the host. This can be done by “touching” the data on the host by getting a control portal.

The VTK-m vtkm::cont::Timer does its best to capture the time it takes for all parallel operations run between calls
to vtkm::cont::Timer::Start() and vtkm::cont::Timer::Stop() to complete. It does so by synchronizing to
concurrent execution on devices that might be in use.

Common Errors

Because vtkm::cont::Timer synchronizes with devices (essentially waiting for the device to finish executing), that
can have an effect on how your program runs. Be aware that using a vtkm::cont::Timer can itself change the
performance of your code. In particular, starting and stopping the timer many times to measure the parts of a sequence
of operations can potentially make the whole operation run slower.

By default, vtkm::cont::Timer will synchronize with all active devices. However, if you want to measure the time
for a specific device, then you can pass the device adapter tag or id to vtkm::cont::Timer’s constructor. You can also
change the device being used by passing a device adapter tag or id to the vtkm::cont::Timer::Reset()method. A
device can also be specified through an optional argument to the vtkm::cont::Timer::GetElapsedTime()method.

class Timer
A class that can be used to time operations in VTK-m that might be occuring in parallel.

Users are recommended to provide a device adapter at construction time which matches the one being used
to execute algorithms to ensure that thread synchronization is correct and accurate. If no device adapter is
provided at construction time, the maximum elapsed time of all enabled deivces will be returned. Normally
cuda is expected to have the longest execution time if enabled. Per device adapter time query is also supported.
It’s useful when users want to reuse the same timer to measure the cuda kernal call as well as the cuda device
execution. It is also possible to change the device adapter after construction by calling the form of the Reset
method with a new DeviceAdapterId.

The there is no guaranteed resolution of the time but should generally be good to about a millisecond.

Public Functions

void Reset()
Restores the initial state of the :class:vtkm::cont::Timer.

All previous recorded time is erased. Reset() optionally takes a device adapter tag or id that specifies on
which device to time and synchronize.

void Reset(vtkm::cont::DeviceAdapterId device)
Resets the timer and changes the device to time on.

void Start()
Causes the Timer to begin timing.

The elapsed time will record an interval beginning when this method is called.

void Stop()
Causes the Timer() to finish timing.

The elapsed time will record an interval ending when this method is called. It is invalid to stop the timer if
Started() is not true.

216 Chapter 14. Timers

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

bool Started() const
Returns true if Start() has been called.

It is invalid to try to get the elapsed time if Started() is not true.

bool Stopped() const
Returns true if Timer::Stop() has been called.

If Stopped() is true, then the elapsed time will no longer increase. If Stopped() is false and Started()
is true, then the timer is still running.

bool Ready() const
Used to check if Timer has finished the synchronization to get the result from the device.

vtkm::Float64 GetElapsedTime() const
Returns the amount of time that has elapsed between calling Start() and Stop().

If Stop() was not called, then the amount of time between calling Start() and GetElapsedTime() is
returned. GetElapsedTime() can optionally take a device adapter tag or id to specify for which device to
return the elapsed time. Returns the device for which this timer is synchronized. If the device adapter has
the same id as vtkm::cont::DeviceAdapterTagAny, then the timer will synchronize all devices.

inline vtkm::cont::DeviceAdapterId GetDevice() const
Returns the id of the device adapter for which this timer is synchronized.

If the device adapter has the same id as vtkm::cont::DeviceAdapterTagAny (the default), then the
timer will synchronize on all devices.

void Synchronize() const
Synchronize the device(s) that this timer is monitoring without starting or stopping the timer.

This is useful for ensuring that external events are synchronized to this timer.

Note that this method will allways block until the device(s) finish even if the Start/Stop methods do
not actually block. For example, the timer for CUDA does not actually wait for asynchronous operations
to finish. Rather, it inserts a fence and records the time as fences are encounted. But regardless, this
Synchronize method will block for the CUDA device.

217

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

218 Chapter 14. Timers

CHAPTER

FIFTEEN

IMPLICIT FUNCTIONS

VTK-m’s implicit functions are objects that are constructed with values representing 3D spatial coordinates that often
describe a shape. Each implicit function is typically defined by the surface formed where the value of the function
is equal to 0. All implicit functions implement Value() and Gradient() methods that describe the orientation of a
provided point with respect to the implicit function’s shape.

The Value()method for an implicit function takes a vtkm::Vec3f and returns a vtkm::FloatDefault representing
the orientation of the point with respect to the implicit function’s shape. Negative scalar values represent vector points
inside of the implicit function’s shape. Positive scalar values represent vector points outside the implicit function’s
shape. Zero values represent vector points that lie on the surface of the implicit function.

The Gradient() method for an implicit function takes a vtkm::Vec3f and returns a vtkm::Vec3f representing the
pointing direction from the implicit function’s shape. Gradient calculations are more object shape specific. It is advised
to look at the individual shape implementations for specific implicit functions.

Implicit functions are useful when trying to clip regions from a dataset. For example, it is possible to use
vtkm::filter::contour::ClipWithImplicitFunction to remove a region in a provided dataset according to
the shape of an implicit function. See Section 10.3.4 (Clip with Implicit Function) for more information on clipping
with implicit functions.

VTK-m has implementations of various implicit functions provided by the following subclasses.

15.1 Plane

vtkm::Plane defines an infinite plane. The plane is defined by a pair of vtkm::Vec3f values that represent the
origin, which is any point on the plane, and a normal, which is a vector that is tangent to the plane. These are set with
the vtkm::Plane::SetOrigin() and vtkm::Plane::SetNormal()methods, respectively. Planes extend infinitely
from the origin point in the direction perpendicular form the Normal. An example vtkm::Plane is shown in Figure 1.

Figure 1: Visual Representation of an Implicit Plane. The red dot and arrow represent the origin and normal of the
plane, respectively. For demonstrative purposes the plane as shown with limited area, but in actuality the plane extends
infinitely.

template<typename CoordType = vtkm::FloatDefault>

219

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class Plane : public vtkm::internal::ImplicitFunctionBase<Plane>
Represent a plane with a base point (origin) and normal vector.

Implicit function for a plane.

A plane is defined by a point in the plane and a normal to the plane. The normal does not have to be a unit vector.
The implicit function will still evaluate to 0 at the plane, but the values outside the plane (and the gradient) will
be scaled by the length of the normal vector.

Public Functions

Plane()

Construct a default plane whose base point is the origin and whose normal is (0,0,1)

Plane(const Vector &origin, const Vector &normal, CoordType tol2 = static_cast<CoordType>(1e-8f))
Construct a plane with the given origin and normal.

inline bool IsValid() const
Return true if the plane’s normal is well-defined to within the given tolerance.

CoordType DistanceTo(const Vector &point) const
Return the signed distance from the plane to the point.

Vector ClosestPoint(const Vector &point) const
Return the closest point in the plane to the given point.

template<bool IsTwoSided>
bool Intersect(const Ray<CoordType, 3, IsTwoSided> &ray, CoordType ¶meter, Vector &point, bool

&lineInPlane, CoordType tol = CoordType(1e-6f)) const
Intersect this plane with the ray (or line if the ray is two-sided).

Returns true if there is a non-degenrate intersection (i.e., an isolated point of intersection). Returns false if
there is no intersection or if the intersection is degenerate (i.e., the entire ray/line lies in the plane). In the
latter case, lineInPlane will be true upon exit.

If this method returns true, then parameter will be set to a number indicating where along the ray/line the
plane hits and point will be set to that location. If the input is a ray, the parameter will be non-negative.

bool Intersect(const LineSegment<CoordType> &segment, CoordType ¶meter, bool &lineInPlane)
const

Intersect this plane with the line segment.

Returns true if there is a non-degenrate intersection (i.e., an isolated point of intersection). Returns false if
there is no intersection or if the intersection is degenerate (i.e., the entire line segment lies in the plane). In
the latter case, lineInPlane will be true upon exit.

If this method returns true, then parameter will be set to a number in [0,1] indicating where along the line
segment the plane hits.

bool Intersect(const LineSegment<CoordType> &segment, CoordType ¶meter, Vector &point, bool
&lineInPlane) const

Intersect this plane with the line segment.

Returns true if there is a non-degenrate intersection (i.e., an isolated point of intersection). Returns false if
there is no intersection or if the intersection is degenerate (i.e., the entire line segment lines in the plane).
In the latter case, lineInPlane will be true upon exit.

220 Chapter 15. Implicit Functions

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

If this method returns true, then parameter will be set to a number in [0,1] indicating where along the line
segment the plane hits and point will be set to that location.

bool Intersect(const Plane<CoordType> &other, Ray<CoordType, 3, true> &ray, bool &coincident,
CoordType tol2 = static_cast<CoordType>(1e-6f)) const

Intersect this plane with another plane.

Returns true if there is a non-degenrate intersection (i.e., a line of intersection). Returns false if there is no
intersection or if the intersection is degenerate (i.e., the planes are coincident). In the latter case, coincident
will be true upon exit and segment will unmodified.

If this method returns true, then the resulting segment will have its base point on the line of intersection and
its second point will be a unit length away in the direction of the cross produce of the input plane normals
(this plane crossed with the other).

The tolerance tol is the minimum squared length of the cross-product of the two plane normals. It is also
compared to the squared distance of the base point of other away from this plane when considering whether
the planes are coincident.

inline explicit Plane(const Vector &normal = {0, 0, 1})
Construct a plane through the origin with the given normal.

inline Plane(const Vector &origin, const Vector &normal)
Construct a plane through the given point with the given normal.

inline void SetOrigin(const Vector &origin)
Specify the origin of the plane.

The origin can be any point on the plane.

inline void SetNormal(const Vector &normal)
Specify the normal vector to the plane.

The magnitude of the plane does not matter (so long as it is more than zero) in terms of the location of
the plane where the implicit function equals 0. However, if offsets away from the plane matter then the
magnitude determines the scale of the value away from the plane.

inline const Vector &GetOrigin() const
Specify the origin of the plane.

The origin can be any point on the plane.

inline const Vector &GetNormal() const
Specify the normal vector to the plane.

The magnitude of the plane does not matter (so long as it is more than zero) in terms of the location of
the plane where the implicit function equals 0. However, if offsets away from the plane matter then the
magnitude determines the scale of the value away from the plane.

inline Scalar Value(const Vector &point) const
Evaluate the value of the implicit function.

The Value()method for an implicit function takes a vtkm::Vec3f and returns a vtkm::FloatDefault
representing the orientation of the point with respect to the implicit function’s shape. Negative scalar values
represent vector points inside of the implicit function’s shape. Positive scalar values represent vector points
outside the implicit function’s shape. Zero values represent vector points that lie on the surface of the
implicit function.

15.1. Plane 221

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline Vector Gradient(const Vector&) const
Evaluate the gradient of the implicit function.

The Gradient() method for an implicit function takes a vtkm::Vec3f and returns a vtkm::Vec3f rep-
resenting the pointing direction from the implicit function’s shape. Gradient calculations are more object
shape specific. It is advised to look at the individual shape implementations for specific implicit functions.

15.2 Sphere

vtkm::Sphere defines a sphere. The vtkm::Sphere is defined by a center location and a radius, which are set
with the vtkm::Sphere::SetCenter() and vtkm::Sphere::SetRadius() methods, respectively. An example
vtkm::Sphere is shown in Figure 2.

Figure 2: Visual Representation of an Implicit Sphere. The red dot represents the center of the sphere. The radius is
the length of any line (like the blue one shown here) that extends from the center in any direction to the surface.

template<typename CoordType = vtkm::FloatDefault, int Dim = 3>

class Sphere : public vtkm::internal::ImplicitFunctionBase<Sphere>
Represent a sphere of the given Dimension.

Implicit function for a sphere.

If a constructor is given an invalid specification, then the Radius of the resulting sphere will be -1.

A sphere is defined by its center and a radius.

The value of the sphere implicit function is the square of the distance from the center biased by the radius (so
the surface of the sphere is at value 0).

Public Functions

Sphere()

Construct a default sphere (unit radius at the origin).

Sphere(const Vector ¢er, CoordType radius)
Construct a sphere from a center point and radius.

inline bool IsValid() const
Return true if the sphere is valid (i.e., has a strictly positive radius).

222 Chapter 15. Implicit Functions

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

bool Contains(const Vector &point, CoordType tol2 = 0.f) const
Return whether the point lies strictly inside the sphere.

int Classify(const Vector &point, CoordType tol2 = 0.f) const
Classify a point as inside (-1), on (0), or outside (+1) of the sphere.

The tolerance tol2 is the maximum allowable difference in squared magnitude between the squared radius
and the squared distance between the point and Center.

inline explicit Sphere(Scalar radius = 0.5)
Construct a sphere with center at (0,0,0) and the given radius.

inline Sphere(Vector center, Scalar radius)
Construct a sphere with the given center and radius.

inline void SetRadius(Scalar radius)
Specify the radius of the sphere.

inline void SetCenter(const Vector ¢er)
Specify the center of the sphere.

inline Scalar GetRadius() const
Specify the radius of the sphere.

inline const Vector &GetCenter() const
Specify the center of the sphere.

inline Scalar Value(const Vector &point) const
Evaluate the value of the implicit function.

The Value()method for an implicit function takes a vtkm::Vec3f and returns a vtkm::FloatDefault
representing the orientation of the point with respect to the implicit function’s shape. Negative scalar values
represent vector points inside of the implicit function’s shape. Positive scalar values represent vector points
outside the implicit function’s shape. Zero values represent vector points that lie on the surface of the
implicit function.

inline Vector Gradient(const Vector &point) const
Evaluate the gradient of the implicit function.

The Gradient() method for an implicit function takes a vtkm::Vec3f and returns a vtkm::Vec3f rep-
resenting the pointing direction from the implicit function’s shape. Gradient calculations are more object
shape specific. It is advised to look at the individual shape implementations for specific implicit functions.

15.3 Cylinder

vtkm::Cylinder defines a cylinder that extends infinitely along its axis. The cylinder is defined with a cen-
ter point, a direction of the center axis, and a radius, which are set with vtkm::Cylinder::SetCenter(),
vtkm::Cylinder::SetAxis(), and vtkm::Cylinder::SetRadius(), respectively. An example
vtkm::Cylinder is shown in Figure 3 with set origin, radius, and axis values.

class Cylinder : public vtkm::internal::ImplicitFunctionBase<Cylinder>
Implicit function for a cylinder.

Cylinder computes the implicit function and function gradient for a cylinder using F(r)=r^2-Radius^2. By
default the Cylinder is centered at the origin and the axis of rotation is along the y-axis. You can redefine the
center and axis of rotation by setting the Center and Axis data members.

15.3. Cylinder 223

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 3: Visual Representation of an Implicit Cylinder. The red dot represents the center value, and the red arrow
represents the vector that points in the direction of the axis. The radius is the length of any line (like the blue one shown
here) that extends perpendicular from the axis to the surface.

Note that the cylinder is infinite in extent.

Public Functions

inline Cylinder()
Construct cylinder radius of 0.5; centered at origin with axis along y coordinate axis.

inline Cylinder(const Vector &axis, Scalar radius)
Construct a cylinder with the given axis and radius.

The cylinder is centered at the origin.

inline Cylinder(const Vector ¢er, const Vector &axis, Scalar radius)
Construct a cylinder at the given center, axis, and radius.

inline void SetCenter(const Vector ¢er)
Specify the center of the cylinder.

The axis of the cylinder goes through the center.

inline void SetAxis(const Vector &axis)
Specify the direction of the axis of the cylinder.

inline void SetRadius(Scalar radius)
Specify the radius of the cylinder.

inline Scalar Value(const Vector &point) const
Evaluate the value of the implicit function.

The Value()method for an implicit function takes a vtkm::Vec3f and returns a vtkm::FloatDefault
representing the orientation of the point with respect to the implicit function’s shape. Negative scalar values
represent vector points inside of the implicit function’s shape. Positive scalar values represent vector points
outside the implicit function’s shape. Zero values represent vector points that lie on the surface of the
implicit function.

inline Vector Gradient(const Vector &point) const
Evaluate the gradient of the implicit function.

The Gradient() method for an implicit function takes a vtkm::Vec3f and returns a vtkm::Vec3f rep-
resenting the pointing direction from the implicit function’s shape. Gradient calculations are more object
shape specific. It is advised to look at the individual shape implementations for specific implicit functions.

224 Chapter 15. Implicit Functions

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

15.4 Box

vtkm::Box defines an axis-aligned box. The box is defined with a pair of vtkm::Vec3f values that represent the
minimum point coordinates and maximum point coordinates, which are set with vtkm::Box::SetMinPoint() and
vtkm::Box::SetMaxPoint(), respectively. The vtkm::Box is the shape enclosed by intersecting axis-parallel
lines drawn from each point. Alternately, the vtkm::Box can be specified with a vtkm::Bounds object using the
vtkm::Box::SetBounds() method. An example vtkm::Box is shown in Figure 4.

Figure 4: Visual Representation of an Implicit Box. The red dots represent the minimum and maximum points.

class Box : public vtkm::internal::ImplicitFunctionBase<Box>
Implicit function for a box.

Box computes the implicit function and/or gradient for a axis-aligned bounding box. Each side of the box is
orthogonal to all other sides meeting along shared edges and all faces are orthogonal to the x-y-z coordinate
axes.

Public Functions

inline Box()
Construct box with center at (0,0,0) and each side of length 1.0.

inline Box(const Vector &minPoint, const Vector &maxPoint)
Construct a box with the specified minimum and maximum point.

inline Box(Scalar xmin, Scalar xmax, Scalar ymin, Scalar ymax, Scalar zmin, Scalar zmax)
Construct a box with the specified minimum and maximum point.

inline Box(const vtkm::Bounds &bounds)
Construct a box that encompasses the given bounds.

inline void SetMinPoint(const Vector &point)
Specify the minimum coordinate of the box.

inline void SetMaxPoint(const Vector &point)
Specify the maximum coordinate of the box.

inline const Vector &GetMinPoint() const
Specify the minimum coordinate of the box.

15.4. Box 225

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline const Vector &GetMaxPoint() const
Specify the maximum coordinate of the box.

inline void SetBounds(const vtkm::Bounds &bounds)
Specify the size and location of the box by the bounds it encompasses.

inline vtkm::Bounds GetBounds() const
Specify the size and location of the box by the bounds it encompasses.

inline Scalar Value(const Vector &point) const
Evaluate the value of the implicit function.

The Value()method for an implicit function takes a vtkm::Vec3f and returns a vtkm::FloatDefault
representing the orientation of the point with respect to the implicit function’s shape. Negative scalar values
represent vector points inside of the implicit function’s shape. Positive scalar values represent vector points
outside the implicit function’s shape. Zero values represent vector points that lie on the surface of the
implicit function.

inline Vector Gradient(const Vector &point) const
Evaluate the gradient of the implicit function.

The Gradient() method for an implicit function takes a vtkm::Vec3f and returns a vtkm::Vec3f rep-
resenting the pointing direction from the implicit function’s shape. Gradient calculations are more object
shape specific. It is advised to look at the individual shape implementations for specific implicit functions.

15.5 Frustum

vtkm::Frustum defines a hexahedral region with potentially oblique faces. A vtkm::Frustum is typically used
to define the tapered region of space visible in a perspective camera projection. The frustum is defined by the
6 planes that make up its 6 faces. Each plane is defined by a point and a normal vector, which are set with
vtkm::Frustum::SetPlane() and vtkm::Frustum::SetNormal(), respectively. Parameters for all 6 planes can
be set at once using the vtkm::Frustum::SetPlanes() and vtkm::Frustum::SetNormals() methods. Alter-
nately, the vtkm::Frustum can be defined by the 8 points at the vertices of the enclosing hexahedron using the
vtkm::Frustum::CreateFromPoints() method. The points given to vtkm::Frustum::CreateFromPoints()
must be in hex-cell order where the first four points are assumed to be a plane, and the last four points are assumed to
be a plane. An example vtkm::Frustum is shown in Figure 5.

Figure 5: Visual Representation of an Implicit Frustum. The red dots and arrows represent the points and normals
defining each enclosing plane. The blue dots represent the 8 vertices, which can also be used to define the frustum.

226 Chapter 15. Implicit Functions

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

class Frustum : public vtkm::internal::ImplicitFunctionBase<Frustum>
Implicit function for a frustum.

15.6 General Implicit Functions

It is often the case when creating code that uses an implicit function that you do not know which implicit function will
be desired. For example, the vtkm::filter::contour::ClipWithImplicitFunction filter can be used with any
of the implicit functions described here (vtkm::Plane, vtkm::Sphere, etc.).

To handle conditions where you want to support multiple implicit functions simultaneously, VTK-m provides
vtkm::ImplicitFunctionGeneral. Any of the implicit functions described in this chapter can be copied to a
vtkm::ImplicitFunctionGeneral, which will behave like the specified function. The following example shows
shows passing a vtkm::Sphere to vtkm::filter::contour::ClipWithImplicitFunction, which internally
uses vtkm::ImplicitFunctionGeneral to manage the implicit function types.

Example 1: Passing an implicit function to a filter.

1 // Parameters needed for implicit function
2 vtkm::Sphere implicitFunction(vtkm::make_Vec(1, 0, 1), 0.5);
3

4 // Create an instance of a clip filter with this implicit function.
5 vtkm::filter::contour::ClipWithImplicitFunction clip;
6 clip.SetImplicitFunction(implicitFunction);

class ImplicitFunctionGeneral : public vtkm::ImplicitFunctionMultiplexer<vtkm::Box, vtkm::Cylinder,
vtkm::Frustum, vtkm::Plane, vtkm::Sphere, vtkm::MultiPlane<3>>

Implicit function that can switch among known implicit function types.

ImplicitFunctionGeneral can behave as any of the predefined implicit functions provided by VTK-m. This
is helpful when the type of implicit function is not known at compile time. For example, say you want a filter
that can operate on an implicit function. Rather than compile separate versions of the filter, one for each type
of implicit function, you can compile the filter once for ImplicitFunctionGeneral and then set the desired
implicit function at runtime.

To use ImplicitFunctionGeneral, simply create the actual implicit function that you want to use, and then
set the ImplicitFunctionGeneral to that concrete implicit function object.

ImplicitFunctionGeneral currently supports vtkm::Box, vtkm::Cylinder, vtkm::Frustum ,
vtkm::Plane, and vtkm::Sphere.

15.6. General Implicit Functions 227

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

228 Chapter 15. Implicit Functions

Part III

Developing Algorithms

229

CHAPTER

SIXTEEN

GENERAL APPROACH

VTK-m is designed to provide a pervasive parallelism throughout all its visualization algorithms, meaning that the al-
gorithm is designed to operate with independent concurrency at the finest possible level throughout. VTK-m provides
this pervasive parallelism by providing a programming construct called a worklet, which operates on a very fine granu-
larity of data. The worklets are designed as serial components, and VTK-m handles whatever layers of concurrency are
necessary, thereby removing the onus from the visualization algorithm developer. Worklet operation is then wrapped
into filter, which provide a simplified interface to end users.

A worklet is essentially a functor or kernel designed to operate on a small element of data. (The name “worklet” means
work on a small amount of data.) The worklet is constrained to contain a serial and stateless function. These constraints
form three critical purposes. First, the constraints on the worklets allow VTK-m to schedule worklet invocations on
a great many independent concurrent threads and thereby making the algorithm pervasively parallel. Second, the
constraints allow VTK-m to provide thread safety. By controlling the memory access the toolkit can insure that no
worklet will have any memory collisions, false sharing, or other parallel programming pitfalls. Third, the constraints
encourage good programming practices. The worklet model provides a natural approach to visualization algorithm
design that also has good general performance characteristics.

VTK-m allows developers to design algorithms that are run on massive amounts of threads. However, VTK-m also
allows developers to interface to applications, define data, and invoke algorithms that they have written or are provided
otherwise. These two modes represent significantly different operations on the data. The operating code of an algorithm
in a worklet is constrained to access only a small portion of data that is provided by the framework. Conversely, code
that is building the data structures needs to manage the data in its entirety, but has little reason to perform computations
on any particular element.

Consequently, VTK-m is divided into two environments that handle each of these use cases. Each environment has its
own API, and direct interaction between the environments is disallowed. The environments are as follows.

• Execution Environment This is the environment in which the computational portion of algorithms are executed.
The API for this environment provides work for one element with convenient access to information such as con-
nectivity and neighborhood as needed by typical visualization algorithms. Code for the execution environment
is designed to always execute on a very large number of threads.

• Control Environment This is the environment that is used to interface with applications, interface with I/O
devices, and schedule parallel execution of the algorithms. The associated API is designed for users that want to
use VTK-m to analyze their data using provided or supplied filters. Code for the control environment is designed
to run on a single thread (or one single thread per process in an MPI job).

These dual programming environments are partially a convenience to isolate the application from the execution of the
worklets and are partially a necessity to support GPU languages with host and device environments. The control and
execution environments are logically equivalent to the host and device environments, respectively, in CUDA and other
associated GPU languages.

Figure 1 displays the relationship between the control and execution environment. The typical workflow when using
VTK-m is that first the control thread establishes a data set in the control environment and then invokes a parallel
operation on the data using a filter. From there the data is logically divided into its constituent elements, which are sent

231

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 1: Diagram of the VTK-m framework.

to independent invocations of a worklet. The worklet invocations, being independent, are run on as many concurrent
threads as are supported by the device. On completion the results of the worklet invocations are collected to a single
data structure and a handle is returned back to the control environment.

Did You Know?

Are you only planning to use filters in VTK-m that already exist? If so, then everything you work with will be in the
control environment. The execution environment is only used when implementing algorithms for filters.

16.1 Package Structure

VTK-m is organized in a hierarchy of nested packages. VTK-m places definitions in namespaces that correspond to
the package (with the exception that one package may specialize a template defined in a different namespace).

The base package is named vtkm. All classes within VTK-m are placed either directly in the vtkm package or in a
package beneath it. This helps prevent name collisions between VTK-m and any other library.

As described at the beginning of this chapter, the VTK-m API is divided into two distinct environments: the control
environment and the execution environment. The API for these two environments are located in the vtkm::cont and
vtkmexec packages, respectively. Items located in the base vtkm namespace are available in both environments.

Did You Know?

Although it is conventional to spell out names in identifiers (as outlined in https://gitlab.kitware.com/vtk/vtk-m/blob/
master/docs/CodingConventions.md) there is an exception to abbreviate control and execution to cont and exec, re-
spectively. This is because it is also part of the coding convention to declare the entire namespace when using an
identifier that is part of the corresponding package. The shorter names make the identifiers easier to read, faster to
type, and more feasible to pack lines in terminal displays. These abbreviations are also used instead of more common

232 Chapter 16. General Approach

https://gitlab.kitware.com/vtk/vtk-m/blob/master/docs/CodingConventions.md
https://gitlab.kitware.com/vtk/vtk-m/blob/master/docs/CodingConventions.md

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

abbreviations (e.g. ctrl for control) because, as part of actual English words, they are easier to type.

Further functionality in VTK-m is built on top of the base vtkm, vtkm::cont, and vtkm::exec packages. Sup-
port classes for building worklets, introduced in Chapter Chapter 18 (Simple Worklets), are contained in the
vtkm::worklet package. Other facilities in VTK-m are provided in their own packages such as vtkm::io,
vtkm::filter, and vtkm::rendering. These packages are described in Part II (Using VTK-m).

VTK-m contains code that uses specialized compiler features, such as those with CUDA, or libraries, such as Kokkos,
that will not be available on all machines. Code for these features are encapsulated in their own packages under the
vtkm::cont namespace: vtkm::cont::cuda and vtkm::cont::kokkos.

By convention all classes will be defined in a file with the same name as the class name (with a .h extension) located in
a directory corresponding to the package name. For example, the vtkm::cont::DataSet class is found in the vtkm/
cont/DataSet.h header. There are, however, exceptions to this rule. Some smaller classes and types are grouped
together for convenience. These exceptions will be noted as necessary.

Within each namespace there may also be internal and detail sub-namespaces. The internal namespaces contain
features that are used internally and may change without notice. The detail namespaces contain features that are
used by a particular class but must be declared outside of that class. Users should generally ignore classes in these
namespaces.

16.2 Function and Method Environment Modifiers

Any function or method defined by VTK-m must come with a modifier that determines in which environments the
function may be run. These modifiers are C macros that VTK-m uses to instruct the compiler for which architectures
to compile each method. Most user code outside of VTK-m need not use these macros with the important exception of
any classes passed to VTK-m. This occurs when defining new worklets, array storage, and device adapters.

VTK-m provides three modifier macros, VTKM_CONT, VTKM_EXEC, and VTKM_EXEC_CONT, which are used to declare
functions and methods that can run in the control environment, execution environment, and both environments, respec-
tively. These macros get defined by including just about any VTK-m header file, but including vtkm/Types.h will
ensure they are defined.

The modifier macro is placed after the template declaration, if there is one, and before the return type for the function.
Here is a simple example of a function that will square a value. Since most types you would use this function on have
operators in both the control and execution environments, the function is declared for both places.

Example 1: Usage of an environment modifier macro on a function.

1 template<typename ValueType>
2 VTKM_EXEC_CONT ValueType Square(const ValueType& inValue)
3 {
4 return inValue * inValue;
5 }

The primary function of the modifier macros is to inject compiler-specific keywords that specify what architecture
to compile code for. For example, when compiling with CUDA, the control modifiers have __host__ in them and
execution modifiers have __device__ in them.

It is sometimes the case that a function declared as VTKM_EXEC_CONT has to call a method declared as VTKM_EXEC
or VTKM_CONT. Generally functions should not call other functions with incompatible control/execution modifiers,
but sometimes a generic VTKM_EXEC_CONT function calls another function determined by the template parame-
ters, and the valid environments of this subfunction may be inconsistent. For cases like this, you can use the
VTKM_SUPPRESS_EXEC_WARNINGS to tell the compiler to ignore the inconsistency when resolving the template. When
applied to a templated function or method, VTKM_SUPPRESS_EXEC_WARNINGS is placed before the template keyword.

16.2. Function and Method Environment Modifiers 233

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

When applied to a non-templated method in a templated class, VTKM_SUPPRESS_EXEC_WARNINGS is placed before the
environment modifier macro.

Example 2: Suppressing warnings about functions from mixed environ-
ments.

1 VTKM_SUPPRESS_EXEC_WARNINGS
2 template<typename Functor>
3 VTKM_EXEC_CONT void OverlyComplicatedForLoop(Functor& functor, vtkm::Id numInterations)
4 {
5 for (vtkm::Id index = 0; index < numInterations; index++)
6 {
7 functor();
8 }
9 }

234 Chapter 16. General Approach

CHAPTER

SEVENTEEN

BASIC ARRAY HANDLES

Chapter 7 (Data Sets) describes the basic data sets used by VTK-m. This chapter dives deeper into how VTK-m
represents data. Ultimately, data structures like vtkm::cont::DataSet can be broken down into arrays of numbers.
Arrays in VTK-m are managed by a unit called an array handle.

An array handle, which is implemented with the vtkm::cont::ArrayHandle class, manages an array of data that can
be accessed or manipulated by VTK-m algorithms. It is typical to construct an array handle in the control environment
to pass data to an algorithm running in the execution environment. It is also typical for an algorithm running in the
execution environment to populate an array handle, which can then be read back in the control environment. It is also
possible for an array handle to manage data created by one VTK-m algorithm and passed to another, remaining in the
execution environment the whole time and never copied to the control environment.

Did You Know?

The array handle may have multiple copies of the array, one for the control environment and one for each device.
However, depending on the device and how the array is being used, the array handle will only have one copy when
possible. Copies between the environments are implicit and lazy. They are copied only when an operation needs data
in an environment where the data are not.

vtkm::cont::ArrayHandle behaves like a shared smart pointer in that when the C++ object is copied, each
copy holds a reference to the same array. These copies are reference counted so that when all copies of the
vtkm::cont::ArrayHandle are destroyed, any allocated memory is released.

template<typename T, typename StorageTag_ = ::vtkm::cont::StorageTagBasic>

class ArrayHandle : public vtkm::cont::internal::ArrayHandleBase
Manages an array-worth of data.

ArrayHandle manages as array of data that can be manipulated by VTKm algorithms. The ArrayHandle
may have up to two copies of the array, one for the control environment and one for the execution environment,
although depending on the device and how the array is being used, the ArrayHandle will only have one copy
when possible.

An ArrayHandle is often constructed by instantiating one of the ArrayHandle subclasses. Several basic
ArrayHandle types can also be constructed directly and then allocated. The ArrayHandleBasic subclass
provides mechanisms for importing user arrays into an ArrayHandle.

ArrayHandle behaves like a shared smart pointer in that when it is copied each copy holds a reference to the
same array. These copies are reference counted so that when all copies of the ArrayHandle are destroyed, any
allocated memory is released.

Subclassed by vtkm::cont::ArrayHandleImplicit< detail::PhiloxFunctor >,
vtkm::cont::ArrayHandleRuntimeVec< vtkm::Float32 >, vtkm::cont::ArrayHandleTransform<
vtkm::cont::ArrayHandleRandomUniformBits, detail::CanonicalFunctor< vtkm::Float64 > >,

235

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::ArrayHandleTransform< vtkm::cont::ArrayHandleZip< vtkm::cont::ArrayHandleRandomUniformReal<
vtkm::Float64 >, vtkm::cont::ArrayHandleRandomUniformReal< vtkm::Float64 > >, detail::BoxMuller
>, vtkm::cont::ArrayHandleCartesianProduct< FirstHandleType, SecondHandleType, ThirdHandleType >,
vtkm::cont::ArrayHandleDecorator< DecoratorImplT, ArrayTs >, vtkm::cont::ArrayHandleDiscard< Value-
Type_ >, vtkm::cont::ArrayHandleImplicit< FunctorType >, vtkm::cont::ArrayHandleZip< FirstHandleType,
SecondHandleType >

Public Functions

inline ArrayHandle()
Constructs an empty ArrayHandle.

inline ArrayHandle(const vtkm::cont::ArrayHandle<ValueType, StorageTag> &src)
Copy constructor.

Implemented so that it is defined exclusively in the control environment. If there is a separate device for
the execution environment (for example, with CUDA), then the automatically generated copy constructor
could be created for all devices, and it would not be valid for all devices.

inline ArrayHandle(vtkm::cont::ArrayHandle<ValueType, StorageTag> &&src) noexcept
Move constructor.

Implemented so that it is defined exclusively in the control environment. If there is a separate device for
the execution environment (for example, with CUDA), then the automatically generated move constructor
could be created for all devices, and it would not be valid for all devices.

inline explicit ArrayHandle(const std::vector<vtkm::cont::internal::Buffer> &buffers)
Special constructor for subclass specializations that need to set the initial state array.

Used when pulling data from other sources.

inline explicit ArrayHandle(std::vector<vtkm::cont::internal::Buffer> &&buffers) noexcept
Special constructor for subclass specializations that need to set the initial state array.

Used when pulling data from other sources.

inline ~ArrayHandle()
Destructs an empty ArrayHandle.

Implemented so that it is defined exclusively in the control environment. If there is a separate device for
the execution environment (for example, with CUDA), then the automatically generated destructor could
be created for all devices, and it would not be valid for all devices.

inline vtkm::cont::ArrayHandle<ValueType, StorageTag> &operator=(const
vtkm::cont::ArrayHandle<ValueType,
StorageTag> &src)

Shallow copies an ArrayHandle.

inline vtkm::cont::ArrayHandle<ValueType, StorageTag> &operator=(vtkm::cont::ArrayHandle<ValueType,
StorageTag> &&src) noexcept

Move and Assignment of an ArrayHandle.

inline bool operator==(const ArrayHandle<ValueType, StorageTag> &rhs) const
Like a pointer, two ArrayHandles are considered equal if they point to the same location in memory.

inline StorageType GetStorage() const
Get the storage.

236 Chapter 17. Basic Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline ReadPortalType ReadPortal() const
Get an array portal that can be used in the control environment.

The returned array can be used in the control environment to read values from the array. (It is not possible
to write to the returned portal. That is Get will work on the portal, but Set will not.)

Note: The returned portal cannot be used in the execution environment. This is because the portal will
not work on some devices like GPUs. To get a portal that will work in the execution environment, use
PrepareForInput.

inline WritePortalType WritePortal() const
Get an array portal that can be used in the control environment.

The returned array can be used in the control environment to reand and write values to the array.

Note: The returned portal cannot be used in the execution environment. This is because the portal will
not work on some devices like GPUs. To get a portal that will work in the execution environment, use
PrepareForInput.

inline WritePortalType WritePortal(vtkm::cont::Token &token) const
Get an array portal that can be used in the control environment.

The returned array can be used in the control environment to reand and write values to the array.

Note: The returned portal cannot be used in the execution environment. This is because the portal will
not work on some devices like GPUs. To get a portal that will work in the execution environment, use
PrepareForInput.

inline vtkm::Id GetNumberOfValues() const
Returns the number of entries in the array.

inline vtkm::IdComponent GetNumberOfComponentsFlat() const
Returns the total number of components for each value in the array.

If the array holds vtkm::Vec objects, this will return the total number of components in each value assum-
ing the object is flattened out to one level of Vec objects. If the array holds a basic C type (such as float),
this will return 1. If the array holds a simple Vec (such as vtkm::Vec3f), this will return the number of
components (in this case 3). If the array holds a hierarchy of Vecs (such as vtkm::Vec<vtkm::Vec3f,
2>), this will return the total number of vecs (in this case 6).

If this object is holding an array where the number of components can be selected at runtime (for
example, vtkm::cont::ArrayHandleRuntimeVec), this method will still return the correct num-
ber of components. However, if each value in the array can be a Vec of a different size (such as
vtkm::cont::ArrayHandleGroupVecVariable), this method will return 0 (because there is no con-
sistent answer).

inline void Allocate(vtkm::Id numberOfValues, vtkm::CopyFlag preserve, vtkm::cont::Token &token) const
Allocates an array large enough to hold the given number of values.

The allocation may be done on an already existing array. If so, then the data are preserved as best as possible
if the preserve flag is set to vtkm::CopyFlag::On. If the preserve flag is set to vtkm::CopyFlag::Off
(the default), any existing data could be wiped out.

This method can throw vtkm::cont::ErrorBadAllocation if the array cannot be allocated or
vtkm::cont::ErrorBadValue if the allocation is not feasible (for example, the array storage is read-
only).

inline void Allocate(vtkm::Id numberOfValues, vtkm::CopyFlag preserve = vtkm::CopyFlag::Off) const
Allocates an array large enough to hold the given number of values.

237

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The allocation may be done on an already existing array. If so, then the data are preserved as best as possible
if the preserve flag is set to vtkm::CopyFlag::On. If the preserve flag is set to vtkm::CopyFlag::Off
(the default), any existing data could be wiped out.

This method can throw vtkm::cont::ErrorBadAllocation if the array cannot be allocated or
vtkm::cont::ErrorBadValue if the allocation is not feasible (for example, the array storage is read-
only).

inline void AllocateAndFill(vtkm::Id numberOfValues, const ValueType &fillValue, vtkm::CopyFlag
preserve, vtkm::cont::Token &token) const

Allocates an array and fills it with an initial value.

AllocateAndFill behaves similar to Allocate except that after allocation it fills the array with a given
fillValue. This method is convenient when you wish to initialize the array.

If the preserve flag is vtkm::CopyFlag::On, then any data that existed before the call to
AllocateAndFill will remain after the call (assuming the new array size is large enough). If the array
size is expanded, then the new values at the end will be filled.

If the preserve flag is vtkm::CopyFlag::Off (the default), the entire array is filled with the given
fillValue.

inline void AllocateAndFill(vtkm::Id numberOfValues, const ValueType &fillValue, vtkm::CopyFlag
preserve = vtkm::CopyFlag::Off) const

Allocates an array and fills it with an initial value.

AllocateAndFill behaves similar to Allocate except that after allocation it fills the array with a given
fillValue. This method is convenient when you wish to initialize the array.

If the preserve flag is vtkm::CopyFlag::On, then any data that existed before the call to
AllocateAndFill will remain after the call (assuming the new array size is large enough). If the array
size is expanded, then the new values at the end will be filled.

If the preserve flag is vtkm::CopyFlag::Off (the default), the entire array is filled with the given
fillValue.

inline void Fill(const ValueType &fillValue, vtkm::Id startIndex, vtkm::Id endIndex, vtkm::cont::Token
&token) const

Fills the array with a given value.

After calling this method, every entry in the array from startIndex (inclusive) to endIndex (exclusive)
of the array is set to fillValue. If startIndex or endIndex is not specified, then the fill happens from
the begining or end, respectively.

inline void Fill(const ValueType &fillValue, vtkm::Id startIndex, vtkm::Id endIndex) const
Fills the array with a given value.

After calling this method, every entry in the array from startIndex (inclusive) to endIndex (exclusive)
of the array is set to fillValue. If startIndex or endIndex is not specified, then the fill happens from
the begining or end, respectively.

inline void Fill(const ValueType &fillValue, vtkm::Id startIndex = 0) const
Fills the array with a given value.

After calling this method, every entry in the array from startIndex (inclusive) to endIndex (exclusive)
of the array is set to fillValue. If startIndex or endIndex is not specified, then the fill happens from
the begining or end, respectively.

238 Chapter 17. Basic Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void ReleaseResourcesExecution() const
Releases any resources being used in the execution environment (that are not being shared by the control
environment).

inline void ReleaseResources() const
Releases all resources in both the control and execution environments.

inline ReadPortalType PrepareForInput(vtkm::cont::DeviceAdapterId device, vtkm::cont::Token &token)
const

Prepares this array to be used as an input to an operation in the execution environment.

If necessary, copies data to the execution environment. Can throw an exception if this array does not yet
contain any data. Returns a portal that can be used in code running in the execution environment.

The Token object provided will be attached to this ArrayHandle. The returned portal is guaranteed to
be valid while the Token is still attached and in scope. Other operations on this ArrayHandle that would
invalidate the returned portal will block until the Token is released. Likewise, this method will block if
another Token is already attached. This can potentially lead to deadlocks.

inline WritePortalType PrepareForInPlace(vtkm::cont::DeviceAdapterId device, vtkm::cont::Token
&token) const

Prepares this array to be used in an in-place operation (both as input and output) in the execution environ-
ment.

If necessary, copies data to the execution environment. Can throw an exception if this array does not yet
contain any data. Returns a portal that can be used in code running in the execution environment.

The Token object provided will be attached to this ArrayHandle. The returned portal is guaranteed to
be valid while the Token is still attached and in scope. Other operations on this ArrayHandle that would
invalidate the returned portal will block until the Token is released. Likewise, this method will block if
another Token is already attached. This can potentially lead to deadlocks.

inline WritePortalType PrepareForOutput(vtkm::Id numberOfValues, vtkm::cont::DeviceAdapterId device,
vtkm::cont::Token &token) const

Prepares (allocates) this array to be used as an output from an operation in the execution environment.

The internal state of this class is set to have valid data in the execution array with the assumption that the
array will be filled soon (i.e. before any other methods of this object are called). Returns a portal that can
be used in code running in the execution environment.

The Token object provided will be attached to this ArrayHandle. The returned portal is guaranteed to
be valid while the Token is still attached and in scope. Other operations on this ArrayHandle that would
invalidate the returned portal will block until the Token is released. Likewise, this method will block if
another Token is already attached. This can potentially lead to deadlocks.

inline bool IsOnDevice(vtkm::cont::DeviceAdapterId device) const
Returns true if the ArrayHandle’s data is on the given device.

If the data are on the given device, then preparing for that device should not require any data movement.

inline bool IsOnHost() const
Returns true if the ArrayHandle’s data is on the host.

If the data are on the given device, then calling ReadPortal or WritePortal should not require any data
movement.

inline void SyncControlArray() const
Synchronizes the control array with the execution array.

239

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

If either the user array or control array is already valid, this method does nothing (because the data is already
available in the control environment). Although the internal state of this class can change, the method is
declared const because logically the data does not.

inline void Enqueue(const vtkm::cont::Token &token) const
Enqueue a token for access to this ArrayHandle.

This method places the given Token into the queue of Tokens waiting for access to this ArrayHandle and
then returns immediately. When this token is later used to get data from this ArrayHandle (for example,
in a call to PrepareForInput), it will use this place in the queue while waiting for access.

This method is to be used to ensure that a set of accesses to an ArrayHandle that happen on multiple
threads occur in a specified order. For example, if you spawn of a job to modify data in an ArrayHandle
and then spawn off a job that reads that same data, you need to make sure that the first job gets access to the
ArrayHandle before the second. If they both just attempt to call their respective Prepare methods, there
is no guarantee which order they will occur. Having the spawning thread first call this method will ensure
the order.

Warning: After calling this method it is required to subsequently call a method like one of the Prepare
methods that attaches the token to this ArrayHandle. Otherwise, the enqueued token will block any
subsequent access to the ArrayHandle, even if the Token is destroyed.

inline void DeepCopyFrom(const vtkm::cont::ArrayHandle<ValueType, StorageTag> &source) const
Deep copies the data in the array.

Takes the data that is in source and copies that data into this array.

inline const std::vector<vtkm::cont::internal::Buffer> &GetBuffers() const
Returns the internal Buffer structures that hold the data.

Note that great care should be taken when modifying buffers outside of the ArrayHandle.

17.1 Creating Array Handles

vtkm::cont::ArrayHandle is templated on the type of values being stored in the array. There are multiple ways to
create and populate an array handle. The default vtkm::cont::ArrayHandle constructor will create an empty array
with nothing allocated in either the control or execution environment. This is convenient for creating arrays used as the
output for algorithms.

Example 1: Creating an vtkm::cont::ArrayHandle for output data.

1 vtkm::cont::ArrayHandle<vtkm::Float32> outputArray;

Chapter ref{chap:AccessingAllocatingArrays} describes in detail how to allocate memory and access data in an
vtkm::cont::ArrayHandle. However, you can use the vtkm::cont::make_ArrayHandle() function for a sim-
plified way to create an vtkm::cont::ArrayHandle with data.

vtkm::cont::make_ArrayHandle() has many forms. An easy form to use takes an initializer list and creates a basic
vtkm::cont::ArrayHandle with it. This allows you to create a short vtkm::cont::ArrayHandle from literals.

template<typename T>
vtkm::cont::ArrayHandleBasic<T> vtkm::cont::make_ArrayHandle(std::initializer_list<T> &&values)

Create an ArrayHandle directly from an initializer list of values.

240 Chapter 17. Basic Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 2: Creating an vtkm::cont::ArrayHandle from initially
specified values.

1 auto fibonacciArray = vtkm::cont::make_ArrayHandle({ 0, 1, 1, 2, 3, 5, 8, 13 });

One problem with creating an array from an initializer list like this is that it can be tricky to specify the exact value type
of the vtkm::cont::ArrayHandle. The value type of the vtkm::cont::ArrayHandle will be the same types as
the literals in the initializer list, but that might not match the type you actually need. This is particularly true for types
like vtkm::Id and vtkm::FloatDefault, which can change depending on compile options. To specify the exact
value type to use, give that type as a template argument to the vtkm::cont::make_ArrayHandle() function.

Example 3: Creating a typed vtkm::cont::ArrayHandle from initially
specified values.

1 vtkm::cont::ArrayHandle<vtkm::FloatDefault> inputArray =
2 vtkm::cont::make_ArrayHandle<vtkm::FloatDefault>({ 1.4142f, 2.7183f, 3.1416f });

Constructing an vtkm::cont::ArrayHandle that points to a provided C array is also straightforward. To
do this, call vtkm::cont::make_ArrayHandle() with the array pointer, the number of values in the C ar-
ray, and a vtkm::CopyFlag. This last argument can be either vtkm::CopyFlag::On to copy the array or
vtkm::CopyFlag::Off to share the provided buffer.

template<typename T>
vtkm::cont::ArrayHandleBasic<T> vtkm::cont::make_ArrayHandle(const T *array, vtkm::Id numberOfValues,

vtkm::CopyFlag copy)
A convenience function for creating an ArrayHandle from a standard C array.

enum class vtkm::CopyFlag
Identifier used to specify whether a function should deep copy data.

Values:

enumerator Off

enumerator On

Example 4: Creating an vtkm::cont::ArrayHandle that points to a
provided C array.

1 vtkm::Float32 dataBuffer[50];
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3

4 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
5 vtkm::cont::make_ArrayHandle(dataBuffer, 50, vtkm::CopyFlag::On);

Likewise, you can use vtkm::cont::make_ArrayHandle() to transfer data from a std::vector to an
vtkm::cont::ArrayHandle. This form of vtkm::cont::make_ArrayHandle() takes the std::vector as the
first argument and a vtkm::CopyFlag as the second argument.

template<typename T, typename Allocator>
vtkm::cont::ArrayHandleBasic<T> vtkm::cont::make_ArrayHandle(const std::vector<T , Allocator> &array,

vtkm::CopyFlag copy)
A convenience function for creating an ArrayHandle from an std::vector.

17.1. Creating Array Handles 241

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 5: Creating an vtkm::cont::ArrayHandle that points to a
provided std::vector.

1 std::vector<vtkm::Float32> dataBuffer;
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3

4 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
5 vtkm::cont::make_ArrayHandle(dataBuffer, vtkm::CopyFlag::On);

As hinted at earlier, it is possible to send vtkm::CopyFlag::On to vtkm::cont::make_ArrayHandle() to
wrap an vtkm::cont::ArrayHandle around an existing C array or std::vector. Doing so allows you to
send the data to the vtkm::cont::ArrayHandle without copying it. It also provides a mechanism for VTK-m
to write directly into your array. However, be aware that if you change or delete the data provided, the inter-
nal state of vtkm::cont::ArrayHandle becomes invalid and undefined behavior can ensue. A common man-
ifestation of this error happens when a std::vector goes out of scope. This subtle interaction will cause the
vtkm::cont::ArrayHandle to point to an unallocated portion of the memory heap. The following example pro-
vides an erroneous use of vtkm::cont::ArrayHandle and some ways to fix it.

Example 6: Invalidating an vtkm::cont::ArrayHandle by letting the
source std::vector leave scope.

1 VTKM_CONT vtkm::cont::ArrayHandle<vtkm::Float32> BadDataLoad()
2 {
3 std::vector<vtkm::Float32> dataBuffer;
4 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
5

6 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
7 vtkm::cont::make_ArrayHandle(dataBuffer, vtkm::CopyFlag::Off);
8

9 return inputArray;
10 // THIS IS WRONG! At this point dataBuffer goes out of scope and deletes its
11 // memory. However, inputArray has a pointer to that memory, which becomes an
12 // invalid pointer in the returned object. Bad things will happen when the
13 // ArrayHandle is used.
14 }
15

16 VTKM_CONT vtkm::cont::ArrayHandle<vtkm::Float32> SafeDataLoad1()
17 {
18 std::vector<vtkm::Float32> dataBuffer;
19 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
20

21 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
22 vtkm::cont::make_ArrayHandle(dataBuffer, vtkm::CopyFlag::On);
23

24 return inputArray;
25 // This is safe.
26 }
27

28 VTKM_CONT vtkm::cont::ArrayHandle<vtkm::Float32> SafeDataLoad2()
29 {
30 std::vector<vtkm::Float32> dataBuffer;
31 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
32

(continues on next page)

242 Chapter 17. Basic Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

33 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
34 vtkm::cont::make_ArrayHandleMove(std::move(dataBuffer));
35

36 return inputArray;
37 // This is safe.
38 }

An easy way around the problem of having an vtkm::cont::ArrayHandle’s data going out of scope is to copy the
data into the vtkm::cont::ArrayHandle. Simply make the vtkm::CopyFlag argument be vtkm::CopyFlag::On
to copy the data. This solution is shown in Example 6, line 22.

What if you have a std::vector that you want to pass to an vtkm::cont::ArrayHandle and then want
to only use in the vtkm::cont::ArrayHandle? In this case, it is wasteful to have to copy the data,
but you also do not want to be responsible for keeping the std::vector in scope. To handle this, there
is a special vtkm::cont::make_ArrayHandleMove() that will move the memory out of the std::vector
and into the vtkm::cont::ArrayHandle. vtkm::cont::make_ArrayHandleMove() takes an “rvalue” ver-
sion of a std::vector. To create an “rvalue”, use the std::move function provided by C++. Once
vtkm::cont::make_ArrayHandleMove() is called, the provided std::vector becomes invalid and any further
access to it is undefined. This solution is shown in :exlineref:ex:ArrayOutOfScope:MoveVector`.

template<typename T, typename Allocator>
vtkm::cont::ArrayHandleBasic<T> vtkm::cont::make_ArrayHandleMove(std::vector<T , Allocator> &&array)

Move an std::vector into an ArrayHandle.

template<typename T, typename Allocator>
vtkm::cont::ArrayHandleBasic<T> vtkm::cont::make_ArrayHandle(std::vector<T , Allocator> &&array,

vtkm::CopyFlag)
Move an std::vector into an ArrayHandle.

17.2 Deep Array Copies

As stated previously, an vtkm::cont::ArrayHandle object behaves as a smart pointer that copies references to the
data without copying the data itself. This is clearly faster and more memory efficient than making copies of the data
itself and usually the behavior desired. However, it is sometimes the case that you need to make a separate copy of the
data.

The easiest way to copy an vtkm::cont::ArrayHandle is to use the vtkm::cont::ArrayHandle::DeepCopyFrom()
method.

Example 7: Deep copy a vtkm::cont::ArrayHandle of the same type.

1 destArray.DeepCopyFrom(srcArray);

However, the vtkm::cont::ArrayHandle::DeepCopyFrom() method only works if the two
vtkm::cont::ArrayHandle objects are the exact same type. To simplify copying the data between
vtkm::cont::ArrayHandle objects of different types, VTK-m comes with the vtkm::cont::ArrayCopy()
convenience function defined in vtkm/cont/ArrayCopy.h. vtkm::cont::ArrayCopy() takes the array to copy
from (the source) as its first argument and the array to copy to (the destination) as its second argument. The destination
array will be properly reallocated to the correct size.

17.2. Deep Array Copies 243

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 8: Using vtkm::cont::ArrayCopy().

1 vtkm::cont::ArrayCopy(srcArray, destArray);

template<typename SourceArrayType, typename DestArrayType>
inline void vtkm::cont::ArrayCopy(const SourceArrayType &source, DestArrayType &destination)

Does a deep copy from one array to another array.

Given a source ArrayHandle and a destination ArrayHandle, this function allocates the destination
ArrayHandle to the correct size and deeply copies all the values from the source to the destination.

This method will attempt to copy the data using the device that the input data is already valid on. If the input
data is only valid in the control environment, the runtime device tracker is used to try to find another device.

This should work on some non-writable array handles as well, as long as both source and destination are the
same type.

This version of array copy uses a precompiled version of copy that is efficient for most standard memory layouts.
However, there are some types of fancy ArrayHandle that cannot be handled directly, and the fallback for these
arrays can be slow. If you see a warning in the log about an inefficient memory copy when extracting a component,
pay heed and look for a different way to copy the data (perhaps using ArrayCopyDevice).

template<typename SourceArrayType>
inline void vtkm::cont::ArrayCopy(const SourceArrayType &source, vtkm::cont::UnknownArrayHandle

&destination)
Does a deep copy from one array to another array.

Given a source ArrayHandle and a destination ArrayHandle, this function allocates the destination
ArrayHandle to the correct size and deeply copies all the values from the source to the destination.

This method will attempt to copy the data using the device that the input data is already valid on. If the input
data is only valid in the control environment, the runtime device tracker is used to try to find another device.

This should work on some non-writable array handles as well, as long as both source and destination are the
same type.

This version of array copy uses a precompiled version of copy that is efficient for most standard memory layouts.
However, there are some types of fancy ArrayHandle that cannot be handled directly, and the fallback for these
arrays can be slow. If you see a warning in the log about an inefficient memory copy when extracting a component,
pay heed and look for a different way to copy the data (perhaps using ArrayCopyDevice).

17.3 The Hidden Second Template Parameter

We have already seen that vtkm::cont::ArrayHandle is a templated class with the template parameter indicating
the type of values stored in the array. However, vtkm::cont::ArrayHandle has a second hidden parameter that
indicates the _storage_ of the array. We have so far been able to ignore this second template parameter because VTK-m
will assign a default storage for us that will store the data in a basic array.

Changing the storage of an vtkm::cont::ArrayHandle lets us do many weird and wonderful things. We will explore
these options in later chapters, but for now we can ignore this second storage template parameter. However, there are
a couple of things to note concerning the storage.

First, if the compiler gives an error concerning your use of vtkm::cont::ArrayHandle, the compiler will report
the vtkm::cont::ArrayHandle type with not one but two template parameters. A second template parameter of
vtkm::cont::StorageTagBasic can be ignored.

244 Chapter 17. Basic Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Second, if you write a function, method, or class that is templated based on an vtkm::cont::ArrayHandle type, it
is good practice to accept an vtkm::cont::ArrayHandle with a non-default storage type. There are two ways to do
this. The first way is to template both the value type and the storage type.

Example 9: Templating a function on an vtkm::cont::ArrayHandle’s
parameters.

1 template<typename T, typename Storage>
2 void Foo(const vtkm::cont::ArrayHandle<T, Storage>& array)
3 {

The second way is to template the whole array type rather than the sub types. If you create a template where you expect
one of the parameters to be an vtkm::cont::ArrayHandle, you should use the VTKM_IS_ARRAY_HANDLE macro to
verify that the type is indeed an vtkm::cont::ArrayHandle.

VTKM_IS_ARRAY_HANDLE(T)
Checks that the given type is a vtkm::cont::ArrayHandle.

If the type is not a vtkm::cont::ArrayHandle or a subclass, a static assert will cause a compile exception.
This is a good way to ensure that a template argument that is assumed to be an array handle type actually is.

Example 10: A template parameter that should be an
vtkm::cont::ArrayHandle.

1 template<typename ArrayType>
2 void Bar(const ArrayType& array)
3 {
4 VTKM_IS_ARRAY_HANDLE(ArrayType);

17.4 Mutability

One subtle feature of vtkm::cont::ArrayHandle is that the class is, in principle, a pointer to an array pointer. This
means that the data in an vtkm::cont::ArrayHandle is always mutable even if the class is declared const. You
can change the contents of “constant” arrays via methods like vtkm::cont::ArrayHandle::WritePortal()
and vtkm::cont::ArrayHandle::PrepareForOutput(). It is even possible to change the
underlying array allocation with methods like vtkm::cont::ArrayHandle::Allocate() and
vtkm::cont::ArrayHandle::ReleaseResources(). The upshot is that you can (sometimes) pass output
arrays as constant vtkm::cont::ArrayHandle references.

So if a constant vtkm::cont::ArrayHandle can have its contents modified, what is the difference between a
constant reference and a non-constant reference? The difference is that the constant reference can change the ar-
ray’s content, but not the array itself. Basically, this means that you cannot perform shallow copies into a const
vtkm::cont::ArrayHandle. This can be a pretty big limitation, and many of VTK-m’s internal device algorithms
still require non-constant references for outputs.

17.4. Mutability 245

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

246 Chapter 17. Basic Array Handles

CHAPTER

EIGHTEEN

SIMPLE WORKLETS

The simplest way to implement an algorithm in VTK-m is to create a worklet. A worklet is fundamentally a functor
that operates on an element of data. Thus, it is a class or struct that has an overloaded parenthesis operator (which
must be declared const for thread safety). However, worklets are also embedded with a significant amount of metadata
on how the data should be managed and how the execution should be structured.

Example 1: A simple worklet.

1 struct PoundsPerSquareInchToNewtonsPerSquareMeterWorklet : vtkm::worklet::WorkletMapField
2 {
3 using ControlSignature = void(FieldIn psi, FieldOut nsm);
4 using ExecutionSignature = void(_1, _2);
5 using InputDomain = _1;
6

7 template<typename T>
8 VTKM_EXEC void operator()(const T& psi, T& nsm) const
9 {

10 // 1 psi = 6894.76 N/m^2
11 nsm = T(6894.76f) * psi;
12 }
13 };

As can be seen in Example 1, a worklet is created by implementing a class or struct with the following features.

1. The class must publicly inherit from a base worklet class that specifies the type of operation being performed
(Example 1, line 1).

2. The class must contain a functional type named ControlSignature (Example 1, line 3), which specifies what
arguments are expected when invoking the class in the control environment.

3. The class must contain a functional type named ExecutionSignature (Example 1, line 4), which specifies
how the data gets passed from the arguments in the control environment to the worklet running in the execution
environment.

4. The class specifies an InputDomain (Example 1, line 5), which identifies which input parameter defines the
input domain of the data.

5. The class must contain an implementation of the parenthesis operator, which is the method that is executed in
the execution environment (lines 7–12). The parenthesis operator must be declared const.

247

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

18.1 Control Signature

The control signature of a worklet is a functional type named ControlSignature. The function prototype matches
what data are provided when the worklet is invoked (as described in Section 18.5 (Invoking a Worklet)).

Example 2: A ControlSignature.

1 using ControlSignature = void(FieldIn psi, FieldOut nsm);

Did You Know?

If the code in Example 2 looks strange, you may be unfamiliar with function types. In C++, functions have types just
as variables and classes do. A function with a prototype like

void functionName(int arg1, float arg2);

has the type void(int, float). VTK-m uses function types like this as a signature that defines the structure of a
function call.

The return type of the function prototype is always void. The parameters of the function prototype are tags that identify
the type of data that is expected to be passed to invoke. ControlSignature tags are defined by the worklet type and
the various tags are documented more fully in Chapter 22 (Worklet Types). In the case of Example 2, the two tags
FieldIn and FieldOut represent input and output data, respectively.

By convention, ControlSignature tag names start with the base concept (e.g. Field or Topology) followed by the
domain (e.g. Point or Cell) followed by In or Out. For example, FieldPointIn would specify values for a field on
the points of a mesh that are used as input (read only). Although they should be there in most cases, some tag names
might leave out the domain or in/out parts if they are obvious or ambiguous.

18.2 Execution Signature

Like the control signature, the execution signature of a worklet is a functional type named ExecutionSignature.
The function prototype must match the parenthesis operator (described in Section 18.4 (Worklet Operator)) in terms
of arity and argument semantics.

Example 3: An ExecutionSignature.

1 using ExecutionSignature = void(_1, _2);

The arguments of the ExecutionSignature’s function prototype are tags that define where the data come from.
The most common tags are an underscore followed by a number, such as _1, _2, etc. These numbers refer back to
the corresponding argument in the ControlSignature. For example, _1 means data from the first control signature
argument, _2 means data from the second control signature argument, etc.

Unlike the control signature, the execution signature optionally can declare a return type if the parenthesis operator re-
turns a value. If this is the case, the return value should be one of the numeric tags (i.e. _1, _2, etc.) to refer to one of the
data structures of the control signature. If the parenthesis operator does not return a value, then ExecutionSignature
should declare the return type as void.

In addition to the numeric tags, there are other execution signature tags to represent other types of data. For example,
the WorkIndex tag identifies the instance of the worklet invocation. Each call to the worklet function will have a unique
WorkIndex. Other such tags exist and are described in the following section on worklet types where appropriate.

248 Chapter 18. Simple Worklets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

18.3 Input Domain

All worklets represent data parallel operations that are executed over independent elements in some domain. The type
of domain is inherent from the worklet type, but the size of the domain is dependent on the data being operated on.

A worklet identifies the argument specifying the domain with a type alias named InputDomain. The InputDomain
must be aliased to one of the execution signature numeric tags (i.e. _1, _2, etc.). By default, the InputDomain points
to the first argument, but a worklet can override that to point to any argument.

Example 4: An InputDomain declaration.

1 using InputDomain = _1;

Different types of worklets can have different types of domain. For example a simple field map worklet has a FieldIn
argument as its input domain, and the size of the input domain is taken from the size of the associated field array.
Likewise, a worklet that maps topology has a CellSetIn argument as its input domain, and the size of the input
domain is taken from the cell set.

Specifying the InputDomain is optional. If it is not specified, the first argument is assumed to be the input domain.

18.4 Worklet Operator

A worklet is fundamentally a functor that operates on an element of data. Thus, the algorithm that the worklet represents
is contained in or called from the parenthesis operator method.

Example 5: An overloaded parenthesis operator of a worklet.

1 template<typename T>
2 VTKM_EXEC void operator()(const T& psi, T& nsm) const
3 {

There are some constraints on the parenthesis operator. First, it must have the same arity as the ExecutionSignature,
and the types of the parameters and return must be compatible. Second, because it runs in the execution environment,
it must be declared with the VTKM_EXEC (or VTKM_EXEC_CONT) modifier. Third, the method must be declared const
to help preserve thread safety.

18.5 Invoking a Worklet

Previously in this chapter we discussed creating a simple worklet. In this section we describe how to run the worklet
in parallel.

A worklet is run using the vtkm::cont::Invoker class.

Example 6: Invoking a worklet.

1 vtkm::cont::ArrayHandle<vtkm::FloatDefault> psiArray;
2 // Fill psiArray with values...
3

4 vtkm::cont::Invoker invoke;
5

6 vtkm::cont::ArrayHandle<vtkm::FloatDefault> nsmArray;
7 invoke(PoundsPerSquareInchToNewtonsPerSquareMeterWorklet{}, psiArray, nsmArray);

18.3. Input Domain 249

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Using an vtkm::cont::Invoker is simple. First, an vtkm::cont::Invoker can be simply constructed with no
arguments (Example 6, line 4). Next, the vtkm::cont::Invoker is called as if it were a function (Example 6, line 7).

The first argument to the invoke is always an instance of the worklet. The remaining arguments are data that are passed
(indirectly) to the worklet. Each of these arguments (after the worklet) match a corresponding argument listed in the
ControlSignature. So in the invocation in Example 6, line 7, the second and third arguments correspond the the two
ControlSignature arguments given in Example 2. psiArray corresponds to the FieldIn argument and nmsArray
corresponds to the FieldOut argument.

struct Invoker
Allows launching any worklet without a dispatcher.

Invoker is a generalized Dispatcher that is able to automatically determine how to properly launch/invoke
any worklet that is passed to it. When an Invoker is constructed it is provided the desired device adapter that
all worklets invoked by it should be launched on.

Invoker is designed to not only reduce the verbosity of constructing multiple dispatchers inside a block of logic,
but also makes it easier to make sure all worklets execute on the same device.

Public Functions

inline explicit Invoker()
Constructs an Invoker that will try to launch worklets on any device that is enabled.

inline explicit Invoker(vtkm::cont::DeviceAdapterId device)
Constructs an Invoker that will try to launch worklets only on the provided device adapter.

template<typename Worklet, typename T, typename ...Args, typename
std::enable_if<detail::scatter_or_mask<T>::value, int>::type* = nullptr>
inline void operator()(Worklet &&worklet, T &&scatterOrMask, Args&&... args) const

Launch the worklet that is provided as the first parameter.

Optional second parameter is either the scatter or mask type associated with the worklet. Any additional
parameters are the ControlSignature arguments for the worklet.

template<typename Worklet, typename T, typename U, typename ...Args, typename
std::enable_if<detail::scatter_or_mask<T>::value && detail::scatter_or_mask<U>::value, int>::type* =
nullptr>
inline void operator()(Worklet &&worklet, T &&scatterOrMaskA, U &&scatterOrMaskB, Args&&...

args) const
Launch the worklet that is provided as the first parameter.

Optional second parameter is either the scatter or mask type associated with the worklet. Optional third
parameter is either the scatter or mask type associated with the worklet. Any additional parameters are the
ControlSignature arguments for the worklet.

template<typename Worklet, typename T, typename ...Args, typename
std::enable_if<!detail::scatter_or_mask<T>::value, int>::type* = nullptr>
inline void operator()(Worklet &&worklet, T &&t, Args&&... args) const

Launch the worklet that is provided as the first parameter.

Optional second parameter is either the scatter or mask type associated with the worklet. Any additional
parameters are the ControlSignature arguments for the worklet.

inline vtkm::cont::DeviceAdapterId GetDevice() const
Get the device adapter that this Invoker is bound too.

250 Chapter 18. Simple Worklets

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

18.6 Preview of More Complex Worklets

This chapter demonstrates the creation of a worklet that performs a very simple math operation in parallel. However,
we have just scratched the surface of the kinds of algorithms that can be expressed with VTK-m worklets. There are
many more execution patterns and data handling constructs. The following example gives a preview of some of the
more advanced features of worklets.

Example 7: A more complex worklet.

1 struct EdgesExtract : vtkm::worklet::WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void(CellSetIn, FieldOutCell edgeIndices);
4 using ExecutionSignature = void(CellShape, PointIndices, VisitIndex, _2);
5 using InputDomain = _1;
6

7 using ScatterType = vtkm::worklet::ScatterCounting;
8

9 template<typename CellShapeTag,
10 typename PointIndexVecType,
11 typename EdgeIndexVecType>
12 VTKM_EXEC void operator()(CellShapeTag cellShape,
13 const PointIndexVecType& globalPointIndicesForCell,
14 vtkm::IdComponent edgeIndex,
15 EdgeIndexVecType& edgeIndices) const
16 {

We will discuss the many features available in the worklet framework throughout Part IV (Advanced Development).

18.6. Preview of More Complex Worklets 251

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

252 Chapter 18. Simple Worklets

CHAPTER

NINETEEN

BASIC FILTER IMPLEMENTATION

Chapter 18 (Simple Worklets) introduced the concept of a worklet and demonstrated how to create and run one to
execute an algorithm on a device. Although worklets provide a powerful mechanism for designing heavily threaded
visualization algorithms, invoking them requires quite a bit of knowledge of the workings of VTK-m. Instead, most
users execute algorithms in VTK-m using filters. Thus, to expose algorithms implemented with worklets to general
users, we need to implement a filter to encapsulate the worklets. In this chapter we will create a filter that encapsulates
the worklet algorithm presented in Chapter 18 (Simple Worklets), which converted the units of a pressure field from
pounds per square inch (psi) to Newtons per square meter (N/m2).

Filters in VTK-m are implemented by deriving vtkm::filter::Filter.

The following example shows the declaration of our pressure unit conversion filter. VTK-m filters are di-
vided into libraries. In this example, we are assuming this filter is being compiled in a library named
vtkm::filter::unit_conversion. By convention, the source files would be placed in a directory named vtkm/
filter/unit_conversion.

Example 1: Header declaration for a simple filter.

1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace unit_conversion
6 {
7

8 class VTKM_FILTER_UNIT_CONVERSION_EXPORT PoundsPerSquareInchToNewtonsPerSquareMeterFilter
9 : public vtkm::filter::Filter

10 {
11 public:
12 VTKM_CONT PoundsPerSquareInchToNewtonsPerSquareMeterFilter();
13

14 VTKM_CONT vtkm::cont::DataSet DoExecute(const vtkm::cont::DataSet& inDataSet) override;
15 };
16

17 }
18 }
19 } // namespace vtkm::filter::unit_conversion

It is typical for a filter to have a constructor to set up its initial state. A filter will also override the
vtkm::filter::Filter::DoExecute() method. The vtkm::filter::Filter::DoExecute() method takes a
vtkm::cont::DataSet as input and likewise returns a vtkm::cont::DataSet containing the results of the filter
operation.

253

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

virtual vtkm::cont::DataSet vtkm::filter::Filter::DoExecute(const vtkm::cont::DataSet &inData) = 0

Note that the declaration of the PoundsPerSquareInchToNewtonsPerSquareMeterFilter contains the export
macro VTKM_FILTER_UNIT_CONVERSION_EXPORT. This is a macro generated by CMake to handle the appro-
priate modifies for exporting a class from a library. Remember that this code is to be placed in a library
named vtkm::filter::unit_conversion. For this library, CMake creates a header file named vtkm/filter/
unit_conversion.h that declares macros like VTKM_FILTER_UNIT_CONVERSION_EXPORT.

Did You Know?

A filter can also override the vtkm::filter::Filter::DoExecutePartitions(), which operates on a
vtkm::cont::PartitionedDataSet. If vtkm::filter::Filter::DoExecutePartitions() is not overrid-
den, then the filter will call vtkm::filter::Filter::DoExecute() on each of the partitions and build a new
vtkm::cont::PartitionedDataSet with the outputs.

virtual vtkm::cont::PartitionedDataSet vtkm::filter::Filter::DoExecutePartitions(const
vtkm::cont::PartitionedDataSet
&inData)

Once the filter class is declared in the .h file, the filter implementation is by convention given in a separate .cxx file.
Given the definition of our filter in Example 1, we will need to provide the implementation for the constructor and
the vtkm::filter::Filter::DoExecute() method. The constructor is quite simple. It initializes the name of the
output field name, which is managed by the superclass.

Example 2: Constructor for a simple filter.

1 VTKM_CONT PoundsPerSquareInchToNewtonsPerSquareMeterFilter::
2 PoundsPerSquareInchToNewtonsPerSquareMeterFilter()
3 {
4 this->SetOutputFieldName("");
5 }

In this case, we are setting the output field name to the empty string. This is not to mean that the default name of the
output field should be the empty string, which is not a good idea. Rather, as we will see later, we will use the empty
string to flag an output name that should be derived from the input name.

The meat of the filter implementation is located in the vtkm::filter::Filter::DoExecute() method.

Example 3: Implementation of DoExecute for a simple filter.

1 VTKM_CONT vtkm::cont::DataSet
2 PoundsPerSquareInchToNewtonsPerSquareMeterFilter::DoExecute(
3 const vtkm::cont::DataSet& inDataSet)
4 {
5 vtkm::cont::Field inField = this->GetFieldFromDataSet(inDataSet);
6

7 vtkm::cont::UnknownArrayHandle outArray;
8

9 auto resolveType = [&](const auto& inputArray) {
10 // use std::decay to remove const ref from the decltype of concrete.
11 using T = typename std::decay_t<decltype(inputArray)>::ValueType;
12 vtkm::cont::ArrayHandle<T> result;
13 this->Invoke(
14 PoundsPerSquareInchToNewtonsPerSquareMeterWorklet{}, inputArray, result);

(continues on next page)

254 Chapter 19. Basic Filter Implementation

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

15 outArray = result;
16 };
17

18 this->CastAndCallScalarField(inField, resolveType);
19

20 std::string outFieldName = this->GetOutputFieldName();
21 if (outFieldName == "")
22 {
23 outFieldName = inField.GetName() + "_N/m^2";
24 }
25

26 return this->CreateResultField(
27 inDataSet, outFieldName, inField.GetAssociation(), outArray);
28 }

The single argument to vtkm::filter::Filter::DoExecute() is a vtkm::cont::DataSet containing the data
to operate on, and vtkm::filter::Filter::DoExecute() returns a derived vtkm::cont::DataSet. The filter
must pull the appropriate information out of the input vtkm::cont::DataSet to operate on. This simple algorithm
just operates on a single field array of the data. The vtkm::filter::Filter base class provides several methods,
documented in Section 9.2.1 (Input Fields), to allow filter users to select the active field to operate on. The filter imple-
mentation can get the appropriate field to operate on using the vtkm::filter::Filter::GetFieldFromDataSet()
method as shown in Example 3, line 5.

inline const vtkm::cont::Field &vtkm::filter::Filter::GetFieldFromDataSet(const vtkm::cont::DataSet
&input) const

Retrieve an input field from a vtkm::cont::DataSet object.

When a filter operates on fields, it should use this method to get the input fields that the use has selected with
SetActiveField() and related methods.

inline const vtkm::cont::Field &vtkm::filter::Filter::GetFieldFromDataSet(vtkm::IdComponent index,
const vtkm::cont::DataSet
&input) const

Retrieve an input field from a vtkm::cont::DataSet object.

When a filter operates on fields, it should use this method to get the input fields that the use has selected with
SetActiveField() and related methods.

One of the challenges with writing filters is determining the actual types the algorithm is operating on. The
vtkm::cont::Field object pulled from the input vtkm::cont::DataSet contains a vtkm::cont::ArrayHandle
(see Chapter 17 (Basic Array Handles)), but you do not know what the template parameters of the
vtkm::cont::ArrayHandle are. There are numerous ways to extract an array of an unknown type out of a
vtkm::cont::ArrayHandle (many of which will be explored later in Chapter ref{chap:UnknownArrayHandle}),
but the vtkm::filter::Filter contains some convenience functions to simplify this.

In particular, this filter operates specifically on scalar fields. For this purpose, vtkm::filter::Filter
provides the vtkm::filter::Filter::CastAndCallScalarField() helper method. The first ar-
gument to vtkm::filter::Filter::CastAndCallScalarField() is the field containing the data
to operate on. The second argument is a functor that will operate on the array once it is identified.
vtkm::filter::Filter::CastAndCallScalarField() will pull a vtkm::cont::ArrayHandle out of the
field and call the provided functor with that object. vtkm::filter::Filter::CastAndCallScalarField() is
called in Example 3, line 18.

template<typename Functor, typename ...Args>

255

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void vtkm::filter::Filter::CastAndCallScalarField(const vtkm::cont::UnknownArrayHandle
&fieldArray, Functor &&functor, Args&&...
args) const

Convenience method to get the array from a filter’s input scalar field.

A field filter typically gets its input fields using the internal GetFieldFromDataSet. To use this field in a
worklet, it eventually needs to be converted to an vtkm::cont::ArrayHandle. If the input field is limited to
be a scalar field, then this method provides a convenient way to determine the correct array type. Like other
CastAndCall methods, it takes as input a vtkm::cont::Field (or vtkm::cont::UnknownArrayHandle)
and a function/functor to call with the appropriate vtkm::cont::ArrayHandle type.

template<typename Functor, typename ...Args>
inline void vtkm::filter::Filter::CastAndCallScalarField(const vtkm::cont::Field &field, Functor

&&functor, Args&&... args) const
Convenience method to get the array from a filter’s input scalar field.

A field filter typically gets its input fields using the internal GetFieldFromDataSet. To use this field in a
worklet, it eventually needs to be converted to an vtkm::cont::ArrayHandle. If the input field is limited to
be a scalar field, then this method provides a convenient way to determine the correct array type. Like other
CastAndCall methods, it takes as input a vtkm::cont::Field (or vtkm::cont::UnknownArrayHandle)
and a function/functor to call with the appropriate vtkm::cont::ArrayHandle type.

Did You Know?

If your filter requires a field containing vtkm::Vec valuess of a particular size (e.g. 3),
you can use the convenience method vtkm::filter::Filter::CastAndCallVecField().
vtkm::filter::Filter::CastAndCallVecField()works similarly to vtkm::filter::Filter::CastAndCallScalarField()
except that it takes a template parameter specifying the size of the vtkm::Vec. For example,
vtkm::filter::Filter::CastAndCallVecField<3>(inField, functor);.

As previously stated, one of the arguments to vtkm::filter::Filter::CastAndCallScalarField() is a functor
that contains the routine to call with the found vtkm::cont::ArrayHandle. A functor can be created as its own
class or struct, but a more convenient method is to use a C++ lambda. A lambda is an unnamed function defined
inline with the code. The lambda in Example 3 starts on line 9. Apart from being more convenient than creating
a named class, lambda functions offer another important feature. Lambda functions can “capture” variables in the
current scope. They can therefore access things like local variables and the this reference to the method’s class (even
accessing private members).

The callback to the lambda function in Example 3 first creates an output vtkm::cont::ArrayHandle of a compatible
type (line 12), then invokes the worklet that computes the derived field (line 13), and finally captures the resulting array.
Note that the vtkm::filter::Filter base class provides a vtkm::filter::Filter::Invoke()member that can
be used to invoke the worklet. (See Section 18.5 (Invoking a Worklet) for information on invoking a worklet.) Recall
that the worklet created in Chapter 18 (Simple Worklets) takes two parameters: an input array and an output array,
which are shown in this invocation.

With the output data created, the filter has to build the output structure to return. All implementations of
vtkm::filter::Filter::DoExecute() must return a vtkm::cont::DataSet, and for a simple field filter like
this we want to return the same vtkm::cont::DataSet as the input with the output field added. The output field
needs a name, and we get the appropriate name from the superclass (Example 3, line 20). However, we would like a
special case where if the user does not specify an output field name we construct one based on the input field name.
Recall from Example 2 that by default we set the output field name to the empty string. Thus, our filter checks for this
empty string, and if it is encountered, it builds a field name by appending “_N/M^2” to it.

Finally, our filter constructs the output vtkm::cont::DataSet using one of the
vtkm::filter::Filter::CreateResult() member functions (Example 3, line 26). In this particular case,

256 Chapter 19. Basic Filter Implementation

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

the filter uses vtkm::filter::Filter::CreateResultField(), which constructs a vtkm::cont::DataSet
with the same structure as the input and adds the computed filter.

vtkm::cont::DataSet vtkm::filter::Filter::CreateResult(const vtkm::cont::DataSet &inDataSet) const
Create the output data set for DoExecute.

This form of CreateResult will create an output data set with the same cell structure and coordinate system as
the input and pass all fields (as requested by the Filter state).

Parameters
inDataSet – [in] The input data set being modified (usually the one passed into DoExecute).
The returned DataSet is filled with the cell set, coordinate system, and fields of inDataSet (as
selected by the FieldsToPass state of the filter).

vtkm::cont::PartitionedDataSet vtkm::filter::Filter::CreateResult(const vtkm::cont::PartitionedDataSet
&input, const
vtkm::cont::PartitionedDataSet
&resultPartitions) const

Create the output data set for DoExecute.

This form of CreateResult will create an output PartitionedDataSet with the same partitions and pass all
PartitionedDataSet fields (as requested by the Filter state).

Parameters

• input – [in] The input data set being modified (usually the one passed into DoExecute).

• resultPartitions – [in] The output data created by the filter. Fields from the input are
passed onto the return result partition as requested by the Filter state.

template<typename FieldMapper>
inline vtkm::cont::PartitionedDataSet vtkm::filter::Filter::CreateResult(const

vtkm::cont::PartitionedDataSet
&input, const
vtkm::cont::PartitionedDataSet
&resultPartitions, FieldMapper
&&fieldMapper) const

Create the output data set for DoExecute.

This form of CreateResult will create an output PartitionedDataSet with the same partitions and pass all
PartitionedDataSet fields (as requested by the Filter state).

Parameters

• input – [in] The input data set being modified (usually the one passed into DoExecute).

• resultPartitions – [in] The output data created by the filter. Fields from the input are
passed onto the return result partition as requested by the Filter state.

• fieldMapper – [in] A function or functor that takes a PartitionedDataSet as its first
argument and a Field as its second argument. The PartitionedDataSet is the data being
created and will eventually be returned by CreateResult. The Field comes from input.

template<typename FieldMapper>
inline vtkm::cont::DataSet vtkm::filter::Filter::CreateResult(const vtkm::cont::DataSet &inDataSet,

const vtkm::cont::UnknownCellSet
&resultCellSet, FieldMapper
&&fieldMapper) const

Create the output data set for DoExecute.

257

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

This form of CreateResult will create an output data set with the given CellSet. You must also provide a
field mapper function, which is a function that takes the output DataSet being created and a Field from the
input and then applies any necessary transformations to the field array and adds it to the DataSet.

Parameters

• inDataSet – [in] The input data set being modified (usually the one passed into
DoExecute). The returned DataSet is filled with fields of inDataSet (as selected by the
FieldsToPass state of the filter).

• resultCellSet – [in] The CellSet of the output will be set to this.

• fieldMapper – [in] A function or functor that takes a DataSet as its first argument and a
Field as its second argument. The DataSet is the data being created and will eventually
be returned by CreateResult. The Field comes from inDataSet. The function should
map the Field to match resultCellSet and then add the resulting field to the DataSet.
If the mapping is not possible, then the function should do nothing.

vtkm::cont::DataSet vtkm::filter::Filter::CreateResultField(const vtkm::cont::DataSet &inDataSet,
const vtkm::cont::Field &resultField) const

Create the output data set for DoExecute

This form of CreateResult will create an output data set with the same cell structure and coordinate system as
the input and pass all fields (as requested by the Filter state). Additionally, it will add the provided field to the
result.

Parameters

• inDataSet – [in] The input data set being modified (usually the one passed into
DoExecute). The returned DataSet is filled with fields of inDataSet (as selected by the
FieldsToPass state of the filter).

• resultField – [in] A Field that is added to the returned DataSet.

inline vtkm::cont::DataSet vtkm::filter::Filter::CreateResultField(const vtkm::cont::DataSet
&inDataSet, const std::string
&resultFieldName,
vtkm::cont::Field::Association
resultFieldAssociation, const
vtkm::cont::UnknownArrayHandle
&resultFieldArray) const

Create the output data set for DoExecute

This form of CreateResult will create an output data set with the same cell structure and coordinate system
as the input and pass all fields (as requested by the Filter state). Additionally, it will add a field matching the
provided specifications to the result.

Parameters

• inDataSet – [in] The input data set being modified (usually the one passed into
DoExecute). The returned DataSet is filled with fields of inDataSet (as selected by the
FieldsToPass state of the filter).

• resultFieldName – [in] The name of the field added to the returned DataSet.

• resultFieldAssociation – [in] The association of the field (e.g. point or cell) added to
the returned DataSet.

• resultFieldArray – [in] An array containing the data for the field added to the returned
DataSet.

258 Chapter 19. Basic Filter Implementation

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::cont::DataSet vtkm::filter::Filter::CreateResultFieldPoint(const vtkm::cont::DataSet
&inDataSet, const std::string
&resultFieldName, const
vtkm::cont::UnknownArrayHandle
&resultFieldArray) const

Create the output data set for DoExecute

This form of CreateResult will create an output data set with the same cell structure and coordinate system as
the input and pass all fields (as requested by the Filter state). Additionally, it will add a point field matching
the provided specifications to the result.

Parameters

• inDataSet – [in] The input data set being modified (usually the one passed into
DoExecute). The returned DataSet is filled with fields of inDataSet (as selected by the
FieldsToPass state of the filter).

• resultFieldName – [in] The name of the field added to the returned DataSet.

• resultFieldArray – [in] An array containing the data for the field added to the returned
DataSet.

inline vtkm::cont::DataSet vtkm::filter::Filter::CreateResultFieldCell(const vtkm::cont::DataSet
&inDataSet, const std::string
&resultFieldName, const
vtkm::cont::UnknownArrayHandle
&resultFieldArray) const

Create the output data set for DoExecute

This form of CreateResult will create an output data set with the same cell structure and coordinate system as
the input and pass all fields (as requested by the Filter state). Additionally, it will add a cell field matching the
provided specifications to the result.

Parameters

• inDataSet – [in] The input data set being modified (usually the one passed into
DoExecute). The returned DataSet is filled with fields of inDataSet (as selected by the
FieldsToPass state of the filter).

• resultFieldName – [in] The name of the field added to the returned DataSet.

• resultFieldArray – [in] An array containing the data for the field added to the returned
DataSet.

template<typename FieldMapper>
inline vtkm::cont::DataSet vtkm::filter::Filter::CreateResultCoordinateSystem(const

vtkm::cont::DataSet
&inDataSet, const
vtkm::cont::UnknownCellSet
&resultCellSet, const
vtkm::cont::CoordinateSystem
&resultCoordSystem,
FieldMapper
&&fieldMapper)
const

Create the output data set for DoExecute.

This form of CreateResult will create an output data set with the given CellSet and CoordinateSystem.
You must also provide a field mapper function, which is a function that takes the output DataSet being created

259

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

and a Field from the input and then applies any necessary transformations to the field array and adds it to the
DataSet.

Parameters

• inDataSet – [in] The input data set being modified (usually the one passed into
DoExecute). The returned DataSet is filled with fields of inDataSet (as selected by the
FieldsToPass state of the filter).

• resultCellSet – [in] The CellSet of the output will be set to this.

• resultCoordSystem – [in] This CoordinateSystem will be added to the output.

• fieldMapper – [in] A function or functor that takes a DataSet as its first argument and a
Field as its second argument. The DataSet is the data being created and will eventually
be returned by CreateResult. The Field comes from inDataSet. The function should
map the Field to match resultCellSet and then add the resulting field to the DataSet.
If the mapping is not possible, then the function should do nothing.

template<typename FieldMapper>
inline vtkm::cont::DataSet vtkm::filter::Filter::CreateResultCoordinateSystem(const

vtkm::cont::DataSet
&inDataSet, const
vtkm::cont::UnknownCellSet
&resultCellSet, const
std::string
&coordsName, const
vtkm::cont::UnknownArrayHandle
&coordsData,
FieldMapper
&&fieldMapper)
const

Create the output data set for DoExecute.

This form of CreateResult will create an output data set with the given CellSet and CoordinateSystem.
You must also provide a field mapper function, which is a function that takes the output DataSet being created
and a Field from the input and then applies any necessary transformations to the field array and adds it to the
DataSet.

Parameters

• inDataSet – [in] The input data set being modified (usually the one passed into
DoExecute). The returned DataSet is filled with fields of inDataSet (as selected by the
FieldsToPass state of the filter).

• resultCellSet – [in] The CellSet of the output will be set to this.

• coordsName – [in] The name of the coordinate system to be added to the output.

• coordsData – [in] The array containing the coordinates of the points.

• fieldMapper – [in] A function or functor that takes a DataSet as its first argument and a
Field as its second argument. The DataSet is the data being created and will eventually
be returned by CreateResult. The Field comes from inDataSet. The function should
map the Field to match resultCellSet and then add the resulting field to the DataSet.
If the mapping is not possible, then the function should do nothing.

Common Errors

260 Chapter 19. Basic Filter Implementation

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The vtkm::filter::Filter::CreateResult() methods do more than just construct a new
vtkm::cont::DataSet. They also set up the structure of the data and pass fields as specified by the state of
the filter object. Thus, implementations of vtkm::filter::Filter::DoExecute() should always return a
vtkm::cont::DataSet that is created with vtkm::filter::Filter::CreateResult() or a similarly named
method in the base filter class.

This chapter has just provided a brief introduction to creating filters. There are several more filter superclasses to help
express algorithms of different types. After some more worklet concepts to implement more complex algorithms are
introduced in Part IV (Advanced Development), we will see a more complete documentation of the types of filters in
Chapter 23 (Extended Filter Implementations).

261

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

262 Chapter 19. Basic Filter Implementation

Part IV

Advanced Development

263

CHAPTER

TWENTY

ADVANCED TYPES

Chapter 4 (Base Types) introduced some of the base data types defined for use in VTK-m. However, for simplicity
Chapter Chapter 4 (Base Types) just briefly touched the high-level concepts of these types. In this chapter we dive into
much greater depth and introduce several more types.

20.1 Single Number Types

As described in Chapter Chapter 4 (Base Types), VTK-m provides aliases for all the base C types to ensure the repre-
sentation matches the variable use. When a specific type width is not required, then the most common types to use are
vtkm::FloatDefault for floating-point numbers, vtkm::Id for array and similar indices, and vtkm::IdComponent
for shorter-width vector indices.

If a specific type width is desired, then one of the following is used to clearly declare the type and width.

bytes floating point signed integer unsigned integer
1 vtkm::Int8 vtkm::UInt8
2 vtkm::Int16 vtkm::UInt16
4 vtkm::Float32 vtkm::Int32 vtkm::UInt32
8 vtkm::Float64 vtkm::Int64 vtkm::UInt64

These VTK-m–defined types should be preferred over basic C types like int or float.

20.2 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homogeneous
coordinates of length 4. To simplify these types of operations, VTK-m provides the vtkm::Vec templated type, which
is essentially a fixed length array of a given type.

template<typename T, vtkm::IdComponent Size>

class Vec : public vtkm::detail::VecBase<T , Size, Vec<T , Size>>
A short fixed-length array.

The Vec templated class holds a short array of values of a size and type specified by the template arguments.

The Vec class is most often used to represent vectors in the mathematical sense as a quantity with a magnitude
and direction. Vectors are, of course, used extensively in computational geometry as well as physical simulations.
The Vec class can be (and is) repurposed for more general usage of holding a fixed-length sequence of objects.

265

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

There is no real limit to the size of the sequence (other than the largest number representable by
vtkm::IdComponent), but the Vec class is really designed for small sequences (seldom more than 10).

Subclassed by vtkm::VecFlat< T, false >

The default constructor of vtkm::Vec objects leaves the values uninitialized. All vectors have a constructor with one
argument that is used to initialize all components. All vtkm::Vec objects also have a constructor that allows you to set
the individual components (one per argument). All vtkm::Vec objects with a size that is greater than 4 are constructed
at run time and support an arbitrary number of initial values. Likewise, there is a vtkm::make_Vec() convenience
function that builds initialized vector types with an arbitrary number of components. Once created, you can use the
bracket operator to get and set component values with the same syntax as an array.

Example 1: Creating vector types.

1 vtkm::Vec3f_32 A{ 1 }; // A is (1, 1, 1)
2 A[1] = 2; // A is now (1, 2, 1)
3 vtkm::Vec3f_32 B{ 1, 2, 3 }; // B is (1, 2, 3)
4 vtkm::Vec3f_32 C = vtkm::make_Vec(3, 4, 5); // C is (3, 4, 5)
5 // Longer Vecs specified with template.
6 vtkm::Vec<vtkm::Float32, 5> D{ 1 }; // D is (1, 1, 1, 1, 1)
7 vtkm::Vec<vtkm::Float32, 5> E{ 1, 2, 3, 4, 5 }; // E is (1, 2, 3, 4, 5)
8 vtkm::Vec<vtkm::Float32, 5> F = { 6, 7, 8, 9, 10 }; // F is (6, 7, 8, 9, 10)
9 auto G = vtkm::make_Vec(1, 3, 5, 7, 9); // G is (1, 3, 5, 7, 9)

template<typename T, typename ...Ts>
constexpr vtkm::Vec<T , vtkm::IdComponent(sizeof...(Ts) + 1)> vtkm::make_Vec(T value0, Ts&&... args)

Initializes and returns a Vec containing all the arguments.

The arguments should all be the same type or compile issues will occur.

The types vtkm::Id2, vtkm::Id3, and vtkm::Id4 are type aliases of vtkm::Vec<vtkm::Id,
2>, vtkm::Vec<vtkm::Id,3>, and vtkm::Vec<vtkm::Id,4>, respectively. These are used to
index arrays of 2, 3, and 4 dimensions, which is common. Likewise, vtkm::IdComponent2,
vtkm::IdComponent3, and vtkm::IdComponent4 are type aliases of vtkm::Vec<vtkm::IdComponent,2>,
vtkm::Vec<vtkm::IdComponent,3>, and vtkm::Vec<vtkm::IdComponent,4>, respectively.

Because declaring vtkm::Vec with all of its template parameters can be cumbersome, VTK-m provides easy to use
aliases for small vectors of base types. As introduced in Section 4.3 (Vector Types), the following type aliases are
available.

bytes size floating point signed integer unsigned integer
1 2 vtkm::Vec2i_8 vtkm::Vec2ui_8

3 vtkm::Vec3i_8 vtkm::Vec3ui_8
4 vtkm::Vec4i_8 vtkm::Vec4ui_8

2 2 vtkm::Vec2i_16 vtkm::Vec2ui_16
3 vtkm::Vec3i_16 vtkm::Vec3ui_16
4 vtkm::Vec4i_16 vtkm::Vec4ui_16

4 2 vtkm::Vec2f_32 vtkm::Vec2i_32 vtkm::Vec2ui_32
3 vtkm::Vec3f_32 vtkm::Vec3i_32 vtkm::Vec3ui_32
4 vtkm::Vec4f_32 vtkm::Vec4i_32 vtkm::Vec4ui_32

8 2 vtkm::Vec2f_64 vtkm::Vec2i_64 vtkm::Vec2ui_64
3 vtkm::Vec3f_64 vtkm::Vec3i_64 vtkm::Vec3ui_64
4 vtkm::Vec4f_64 vtkm::Vec4i_64 vtkm::Vec4ui_64

vtkm::Vec supports component-wise arithmetic using the operators for plus (+), minus (-), multiply (*), and divide

266 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(/). It also supports scalar to vector multiplication with the multiply operator. The comparison operators equal (==) is
true if every pair of corresponding components are true and not equal (!=) is true otherwise. A special vtkm::Dot()
function is overloaded to provide a dot product for every type of vector.

Example 2: Vector operations.

1 vtkm::Vec3f_32 A{ 1, 2, 3 };
2 vtkm::Vec3f_32 B{ 4, 5, 6.5 };
3 vtkm::Vec3f_32 C = A + B; // C is (5, 7, 9.5)
4 vtkm::Vec3f_32 D = 2.0f * C; // D is (10, 14, 19)
5 vtkm::Float32 s = vtkm::Dot(A, B); // s is 33.5
6 bool b1 = (A == B); // b1 is false
7 bool b2 = (A == vtkm::make_Vec(1, 2, 3)); // b2 is true
8

9 vtkm::Vec<vtkm::Float32, 5> E{ 1, 2.5, 3, 4, 5 }; // E is (1, 2, 3, 4, 5)
10 vtkm::Vec<vtkm::Float32, 5> F{ 6, 7, 8.5, 9, 10.5 }; // F is (6, 7, 8, 9, 10)
11 vtkm::Vec<vtkm::Float32, 5> G = E + F; // G is (7, 9.5, 11.5, 13, 15.5)
12 bool b3 = (E == F); // b3 is false
13 bool b4 = (G == vtkm::make_Vec(7.f, 9.5f, 11.5f, 13.f, 15.5f)); // b4 is true

These operators, of course, only work if they are also defined for the component type of the vtkm::Vec. For example,
the multiply operator will work fine on objects of type vtkm::Vec<char,3>, but the multiply operator will not work
on objects of type vtkm::Vec<std::string,3> because you cannot multiply objects of type std::string.

In addition to generalizing vector operations and making arbitrarily long vectors, vtkm::Vec can be repurposed for
creating any sequence of homogeneous objects. Here is a simple example of using vtkm::Vec to hold the state of a
polygon.

Example 3: Repurposing a vtkm::Vec.

1 vtkm::Vec<vtkm::Vec2f_32, 3> equilateralTriangle = { { 0.0f, 0.0f },
2 { 1.0f, 0.0f },
3 { 0.5f, 0.8660254f } };

20.2.1 Vec-like Types

The vtkm::Vec class provides a convenient structure for holding and passing small vectors of data. However, there are
times when using vtkm::Vec is inconvenient or inappropriate. For example, the size of vtkm::Vec must be known at
compile time, but there may be need for a vector whose size is unknown until compile time. Also, the data populating
a vtkm::Vec might come from a source that makes it inconvenient or less efficient to construct a vtkm::Vec. For this
reason, VTK-m also provides several Vec-like objects that behave much like vtkm::Vec but are a different class. These
Vec-like objects have the same interface as vtkm::Vec except that the NUM_COMPONENTS constant is not available on
those that are sized at run time. Vec-like objects also come with a CopyInto method that will take their contents and
copy them into a standard vtkm::Vec class. (The standard vtkm::Vec class also has a vtkm::Vec::CopyInto()
method for consistency.)

20.2. Vector Types 267

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

C-Array Vec Wrapper

The first Vec-like object is vtkm::VecC, which exposes a C-type array as a vtkm::Vec.

template<typename T>

class VecC : public vtkm::detail::VecCBase<T , VecC<T>>
A Vec-like representation for short arrays.

The VecC class takes a short array of values and provides an interface that mimics Vec. This provides a mecha-
nism to treat C arrays like a Vec. It is useful in situations where you want to use a Vec but the data must come
from elsewhere or in certain situations where the size cannot be determined at compile time. In particular, Vec
objects of different sizes can potentially all be converted to a VecC of the same type.

Note that VecC holds a reference to an outside array given to it. If that array gets destroyed (for example because
the source goes out of scope), the behavior becomes undefined.

You cannot use VecC with a const type in its template argument. For example, you cannot declare VecC<const
vtkm::Id>. If you want a non-mutable VecC, the VecCConst class (e.g. VecCConst<vtkm::Id>).

The constructor for vtkm::VecC takes a C array and a size of that array. There is also a constant version of vtkm::VecC
named vtkm::VecCConst, which takes a constant array and cannot be mutated.

template<typename T>

class VecCConst : public vtkm::detail::VecCBase<T , VecCConst<T>>
A const version of VecC.

VecCConst is a non-mutable form of VecC. It can be used in place of VecC when a constant array is available.

A VecC can be automatically converted to a VecCConst, but not vice versa, so function arguments should use
VecCConst when the data do not need to be changed.

The vtkm/Types.h header defines both vtkm::VecC and vtkm::VecCConst as well as multiple versions of
vtkm::make_VecC() to easily convert a C array to either a vtkm::VecC or vtkm::VecCConst.

template<typename T>
static inline vtkm::VecC<T> vtkm::make_VecC(T *array, vtkm::IdComponent size)

Creates a VecC from an input array.

template<typename T>
static inline vtkm::VecCConst<T> vtkm::make_VecC(const T *array, vtkm::IdComponent size)

Creates a VecCConst from a constant input array.

The following example demonstrates converting values from a constant table into a vtkm::VecCConst for further
consumption. The table and associated methods define how 8 points come together to form a hexahedron.

Example 4: Using vtkm::VecCConst with a constant array.

1 VTKM_EXEC vtkm::VecCConst<vtkm::IdComponent> HexagonIndexToIJK(vtkm::IdComponent index)
2 {
3 static const vtkm::IdComponent HexagonIndexToIJKTable[8][3] = {
4 { 0, 0, 0 }, { 1, 0, 0 }, { 1, 1, 0 }, { 0, 1, 0 },
5 { 0, 0, 1 }, { 1, 0, 1 }, { 1, 1, 1 }, { 0, 1, 1 }
6 };
7

8 return vtkm::make_VecC(HexagonIndexToIJKTable[index], 3);
9 }

10

(continues on next page)

268 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

11 VTKM_EXEC vtkm::IdComponent HexagonIJKToIndex(vtkm::VecCConst<vtkm::IdComponent> ijk)
12 {
13 static const vtkm::IdComponent HexagonIJKToIndexTable[2][2][2] = { {
14 // i=0
15 { 0, 4 }, // j=0
16 { 3, 7 }, // j=1
17 },
18 {
19 // i=1
20 { 1, 5 }, // j=0
21 { 2, 6 }, // j=1
22 } };
23

24 return HexagonIJKToIndexTable[ijk[0]][ijk[1]][ijk[2]];
25 }

Common Errors

The vtkm::VecC and vtkm::VecCConst classes only hold a pointer to a buffer that contains the data. They do not
manage the memory holding the data. Thus, if the pointer given to vtkm::VecC or vtkm::VecCConst becomes
invalid, then using the object becomes invalid. Make sure that the scope of the vtkm::VecC or vtkm::VecCConst
does not outlive the scope of the data it points to.

Variable-Sized Vec

The next Vec-like object is vtkm::VecVariable, which provides a Vec-like object that can be resized at run time to
a maximum value. Unlike vtkm::VecC, vtkm::VecVariable holds its own memory, which makes it a bit safer to
use. But also unlike vtkm::VecC, you must define the maximum size of vtkm::VecVariable at compile time. Thus,
vtkm::VecVariable is really only appropriate to use when there is a predetermined limit to the vector size that is
fairly small.

template<typename T, vtkm::IdComponent MaxSize>

class VecVariable
A short variable-length array with maximum length.

The VecVariable class is a Vec-like class that holds a short array of some maximum length. To avoid dynamic
allocations, the maximum length is specified at compile time. Internally, VecVariable holds a Vec of the
maximum length and exposes a subsection of it.

The following example uses a vtkm::VecVariable to store the trace of edges within a hexahedron. This example
uses the methods defined in Example 5.

Example 5: Using vtkm::VecVariable.

1 vtkm::VecVariable<vtkm::IdComponent, 4> HexagonShortestPath(vtkm::IdComponent startPoint,
2 vtkm::IdComponent endPoint)
3 {
4 vtkm::VecCConst<vtkm::IdComponent> startIJK = HexagonIndexToIJK(startPoint);
5 vtkm::VecCConst<vtkm::IdComponent> endIJK = HexagonIndexToIJK(endPoint);
6

7 vtkm::IdComponent3 currentIJK;
(continues on next page)

20.2. Vector Types 269

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

8 startIJK.CopyInto(currentIJK);
9

10 vtkm::VecVariable<vtkm::IdComponent, 4> path;
11 path.Append(startPoint);
12 for (vtkm::IdComponent dimension = 0; dimension < 3; dimension++)
13 {
14 if (currentIJK[dimension] != endIJK[dimension])
15 {
16 currentIJK[dimension] = endIJK[dimension];
17 path.Append(HexagonIJKToIndex(currentIJK));
18 }
19 }
20

21 return path;
22 }

Vecs from Portals

VTK-m provides further examples of Vec-like objects as well. For example, the vtkm::VecFromPortal and
vtkm::VecFromPortalPermute objects allow you to treat a subsection of an arbitrarily large array as a vtkm::Vec.
These objects work by attaching to array portals, which are described in Section~ref{sec:ArrayPortals}.

template<typename PortalType>

class VecFromPortal
A short variable-length array from a window in an ArrayPortal.

The VecFromPortal class is a Vec-like class that holds an array portal and exposes a small window of that
portal as if it were a Vec.

template<typename IndexVecType, typename PortalType>

class VecFromPortalPermute
A short vector from an ArrayPortal and a vector of indices.

The VecFromPortalPermute class is a Vec-like class that holds an array portal and a second Vec-like containing
indices into the array. Each value of this vector is the value from the array with the respective index.

Point Coordinate Vec

Another example of a Vec-like object is vtkm::VecRectilinearPointCoordinates, which efficiently represents
the point coordinates in an axis-aligned hexahedron. Such shapes are common in structured grids. These and other
data sets are described in Chapter 7 (Data Sets).

270 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

20.3 Range

VTK-m provides a convenience structure named vtkm::Range to help manage a range of values. The vtkm::Range
struct contains two data members, vtkm::Range::Min and vtkm::Range::Max, which represent the ends
of the range of numbers. vtkm::Range::Min and vtkm::Range::Max are both of type vtkm::Float64.
vtkm::Range::Min and vtkm::Range::Max can be directly accessed, but vtkm::Range also comes with several
helper functions to make it easier to build and use ranges. Note that all of these functions treat the minimum and
maximum value as inclusive to the range.

struct Range
Represent a continuous scalar range of values.

vtkm::Range is a helper class for representing a range of floating point values from a minimum value to a
maximum value. This is specified simply enough with a Min and Max value.

Range also contains several helper functions for computing and maintaining the range.

Public Functions

inline Range()
Construct a range with a given minimum and maximum.

If no minimum or maximum is given, the range will be empty.

inline bool IsNonEmpty() const
Determine if the range is valid (i.e.

has at least one valid point).

IsNonEmpty return true if the range contains some valid values between Min and Max. If Max is less than
Min, then no values satisfy the range and IsNonEmpty returns false. Otherwise, return true.

IsNonEmpty assumes Min and Max are inclusive. That is, if they are equal then true is returned.

template<typename T>
inline bool Contains(const T &value) const

Determines if a value is within the range.

Contains returns true if the give value is within the range, false otherwise. Contains treats the min and
max as inclusive. That is, if the value is exactly the min or max, true is returned.

inline vtkm::Float64 Length() const
Returns the length of the range.

Length computes the distance between the min and max. If the range is empty, 0 is returned.

inline vtkm::Float64 Center() const
Returns the center of the range.

Center computes the middle value of the range. If the range is empty, NaN is returned.

template<typename T>
inline void Include(const T &value)

Expand range to include a value.

This version of Include expands the range just enough to include the given value. If the range already
includes this value, then nothing is done.

20.3. Range 271

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void Include(const vtkm::Range &range)
Expand range to include other range.

This version of Include expands this range just enough to include that of another range. Essentially it is
the union of the two ranges.

inline vtkm::Range Union(const vtkm::Range &otherRange) const
Return the union of this and another range.

This is a nondestructive form of Include.

inline vtkm::Range Intersection(const vtkm::Range &otherRange) const
Return the intersection of this and another range.

inline vtkm::Range operator+(const vtkm::Range &otherRange) const
Operator for union

Public Members

vtkm::Float64 Min
The minumum value of the range (inclusive).

vtkm::Float64 Max
Tha maximum value of the range (inclusive).

The following example demonstrates the operation of vtkm::Range.

Example 6: Using vtkm::Range.

1 vtkm::Range range; // default constructor is empty range
2 bool b1 = range.IsNonEmpty(); // b1 is false
3

4 range.Include(0.5); // range now is [0.5 .. 0.5]
5 bool b2 = range.IsNonEmpty(); // b2 is true
6 bool b3 = range.Contains(0.5); // b3 is true
7 bool b4 = range.Contains(0.6); // b4 is false
8

9 range.Include(2.0); // range is now [0.5 .. 2]
10 bool b5 = range.Contains(0.5); // b3 is true
11 bool b6 = range.Contains(0.6); // b4 is true
12

13 range.Include(vtkm::Range(-1, 1)); // range is now [-1 .. 2]
14

15 range.Include(vtkm::Range(3, 4)); // range is now [-1 .. 4]
16

17 vtkm::Float64 lower = range.Min; // lower is -1
18 vtkm::Float64 upper = range.Max; // upper is 4
19 vtkm::Float64 length = range.Length(); // length is 5
20 vtkm::Float64 center = range.Center(); // center is 1.5

272 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

20.4 Bounds

VTK-m provides a convenience structure named vtkm::Bounds to help manage an axis-aligned region in 3D space.
Among other things, this structure is often useful for representing a bounding box for geometry. The vtkm::Bounds
struct contains three data members, vtkm::Bounds::X , vtkm::Bounds::Y , and vtkm::Bounds::Z, which repre-
sent the range of the bounds along each respective axis. All three of these members are of type vtkm::Range, which is
discussed previously in Section 20.3 (Range). vtkm::Bounds::X , vtkm::Bounds::Y , and vtkm::Bounds::Z can
be directly accessed, but vtkm::Bounds also comes with the following helper functions to make it easier to build and
use ranges.

struct Bounds
Represent an axis-aligned 3D bounds in space.

vtkm::Bounds is a helper class for representing the axis-aligned box representing some region in space. The
typical use of this class is to express the containing box of some geometry. The box is specified as ranges in the
x, y, and z directions.

Bounds also contains several helper functions for computing and maintaining the bounds.

Public Functions

inline Bounds()
Construct an empty bounds.

The bounds will represent no space until otherwise modified.

inline Bounds(const vtkm::Range &xRange, const vtkm::Range &yRange, const vtkm::Range &zRange)
Construct a bounds with a given range in the x, y, and z dimensions.

template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
inline Bounds(const T1 &minX, const T2 &maxX, const T3 &minY, const T4 &maxY, const T5 &minZ, const

T6 &maxZ)
Construct a bounds with the minimum and maximum coordinates in the x, y, and z directions.

template<typename T>
inline explicit Bounds(const T bounds[6])

Initialize bounds with an array of 6 values in the order xmin, xmax, ymin, ymax, zmin, zmax.

template<typename T>
inline Bounds(const vtkm::Vec<T , 3> &minPoint, const vtkm::Vec<T , 3> &maxPoint)

Initialize bounds with the minimum corner point and the maximum corner point.

inline bool IsNonEmpty() const
Determine if the bounds are valid (i.e.

has at least one valid point).

IsNonEmpty returns true if the bounds contain some valid points. If the bounds are any real region, even
if a single point or it expands to infinity, true is returned.

template<typename T>
inline bool Contains(const vtkm::Vec<T , 3> &point) const

Determines if a point coordinate is within the bounds.

20.4. Bounds 273

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::Float64 Volume() const
Returns the volume of the bounds.

Volume computes the product of the lengths of the ranges in each dimension. If the bounds are empty, 0 is
returned.

inline vtkm::Float64 Area() const
Returns the area of the bounds in the X-Y-plane.

Area computes the product of the lengths of the ranges in dimensions X and Y. If the bounds are empty, 0
is returned.

inline vtkm::Vec3f_64 Center() const
Returns the center of the range.

Center computes the point at the middle of the bounds. If the bounds are empty, the results are undefined.

inline vtkm::Vec3f_64 MinCorner() const
Returns the min point of the bounds

MinCorder returns the minium point of the bounds.If the bounds are empty, the results are undefined.

inline vtkm::Vec3f_64 MaxCorner() const
Returns the max point of the bounds

MaxCorder returns the minium point of the bounds.If the bounds are empty, the results are undefined.

template<typename T>
inline void Include(const vtkm::Vec<T , 3> &point)

Expand bounds to include a point.

This version of Include expands the bounds just enough to include the given point coordinates. If the
bounds already include this point, then nothing is done.

inline void Include(const vtkm::Bounds &bounds)
Expand bounds to include other bounds.

This version of Include expands these bounds just enough to include that of another bounds. Essentially
it is the union of the two bounds.

inline vtkm::Bounds Union(const vtkm::Bounds &otherBounds) const
Return the union of this and another bounds.

This is a nondestructive form of Include.

inline vtkm::Bounds Intersection(const vtkm::Bounds &otherBounds) const
Return the intersection of this and another range.

inline vtkm::Bounds operator+(const vtkm::Bounds &otherBounds) const
Operator for union

274 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Members

vtkm::Range X
The range of values in the X direction.

The vtkm::Range struct provides the minimum and maximum along that axis.

vtkm::Range Y
The range of values in the Y direction.

The vtkm::Range struct provides the minimum and maximum along that axis.

vtkm::Range Z
The range of values in the Z direction.

The vtkm::Range struct provides the minimum and maximum along that axis.

The following example demonstrates the operation of vtkm::Bounds.

Example 7: Using vtkm::Bounds.

1 vtkm::Bounds bounds; // default constructor makes empty
2 bool b1 = bounds.IsNonEmpty(); // b1 is false
3

4 bounds.Include(vtkm::make_Vec(0.5, 2.0, 0.0)); // bounds contains only
5 // the point [0.5, 2, 0]
6 bool b2 = bounds.IsNonEmpty(); // b2 is true
7 bool b3 = bounds.Contains(vtkm::make_Vec(0.5, 2.0, 0.0)); // b3 is true
8 bool b4 = bounds.Contains(vtkm::make_Vec(1, 1, 1)); // b4 is false
9 bool b5 = bounds.Contains(vtkm::make_Vec(0, 0, 0)); // b5 is false

10

11 bounds.Include(vtkm::make_Vec(4, -1, 2)); // bounds is region [0.5 .. 4] in X,
12 // [-1 .. 2] in Y,
13 // and [0 .. 2] in Z
14 bool b6 = bounds.Contains(vtkm::make_Vec(0.5, 2.0, 0.0)); // b6 is true
15 bool b7 = bounds.Contains(vtkm::make_Vec(1, 1, 1)); // b7 is true
16 bool b8 = bounds.Contains(vtkm::make_Vec(0, 0, 0)); // b8 is false
17

18 vtkm::Bounds otherBounds(vtkm::make_Vec(0, 0, 0), vtkm::make_Vec(3, 3, 3));
19 // otherBounds is region [0 .. 3] in X, Y, and Z
20 bounds.Include(otherBounds); // bounds is now region [0 .. 4] in X,
21 // [-1 .. 3] in Y,
22 // and [0 .. 3] in Z
23

24 vtkm::Vec3f_64 lower(bounds.X.Min, bounds.Y.Min, bounds.Z.Min);
25 // lower is [0, -1, 0]
26 vtkm::Vec3f_64 upper(bounds.X.Max, bounds.Y.Max, bounds.Z.Max);
27 // upper is [4, 3, 3]
28

29 vtkm::Vec3f_64 center = bounds.Center(); // center is [2, 1, 1.5]

20.4. Bounds 275

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

20.5 Index Ranges

Just as it is sometimes necessary to track a range of real values, there are times when code has to specify a continuous
range of values in an index sequence like an array. For this purpose, VTK-m provides RangeId, which behaves similarly
to Range except for integer values.

struct RangeId
Represent a range of vtkm::Id values.

vtkm::RangeId is a helper class for representing a range of vtkm::Id values. This is specified simply with a
Min and Max value, where Max is exclusive.

RangeId also contains several helper functions for computing and maintaining the range.

Public Functions

inline RangeId()
Construct a range with no indices.

inline RangeId(vtkm::Id min, vtkm::Id max)
Construct a range with the given minimum (inclusive) and maximum (exclusive) indices.

inline bool IsNonEmpty() const
Determine if the range is valid.

IsNonEmpty return true if the range contains some valid values between Min and Max. If Max <= Min, then
no values satisfy the range and IsNonEmpty returns false. Otherwise, return true.

inline bool Contains(vtkm::Id value) const
Determines if a value is within the range.

Contains returns true if the give value is within the range, false otherwise.

inline vtkm::Id Length() const
Returns the length of the range.

Length computes the distance between the min and max. If the range is empty, 0 is returned.

inline vtkm::Id Center() const
Returns the center of the range.

Center computes the middle value of the range.

inline void Include(vtkm::Id value)
Expand range to include a value.

This version of Include expands the range just enough to include the given value. If the range already
includes this value, then nothing is done.

inline void Include(const vtkm::RangeId &range)
Expand range to include other range.

This version of Include expands this range just enough to include that of another range. Essentially it is
the union of the two ranges.

276 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::RangeId Union(const vtkm::RangeId &other) const
Return the union of this and another range.

This is a nondestructive form of Include.

inline vtkm::RangeId operator+(const vtkm::RangeId &other) const
Operator for union

Public Members

vtkm::Id Min
The minimum index of the range (inclusive).

vtkm::Id Max
The maximum index of the range (exclusive).

VTK-m also often must operate on 2D and 3D arrays (particularly for structured cell sets). For these use cases,
RangeId2 and RangeId3 are provided.

struct RangeId2
Represent 2D integer range.

vtkm::RangeId2 is a helper class for representing a 2D range of integer values. The typical use of this class is
to express a box of indices in the x and y directions.

RangeId2 also contains several helper functions for computing and maintaining the range.

Public Functions

RangeId2() = default
Construct an empty 2D range.

inline RangeId2(const vtkm::RangeId &xrange, const vtkm::RangeId &yrange)
Construct a range with the given x and y directions.

inline RangeId2(vtkm::Id minX, vtkm::Id maxX, vtkm::Id minY, vtkm::Id maxY)
Construct a range with the given minimum (inclusive) and maximum (exclusive) points.

inline explicit RangeId2(const vtkm::Id range[4])
Initialize range with an array of 4 values in the order xmin, xmax, ymin, ymax.

inline RangeId2(const vtkm::Id2 &min, const vtkm::Id2 &max)
Initialize range with the minimum and the maximum corners.

inline bool IsNonEmpty() const
Determine if the range is non-empty.

IsNonEmpty returns true if the range is non-empty.

inline bool Contains(const vtkm::Id2 &val) const
Determines if an Id2 value is within the range.

20.5. Index Ranges 277

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::Id2 Center() const
Returns the center of the range.

Center computes the middle of the range.

template<typename T>
inline void Include(const vtkm::Vec<T , 2> &point)

Expand range to include a value.

This version of Include expands the range just enough to include the given value. If the range already
include this value, then nothing is done.

inline void Include(const vtkm::RangeId2 &range)
Expand range to include other range.

This version of Include expands the range just enough to include the other range. Essentially it is the
union of the two ranges.

inline vtkm::RangeId2 Union(const vtkm::RangeId2 &other) const
Return the union of this and another range.

This is a nondestructive form of Include.

inline vtkm::RangeId2 operator+(const vtkm::RangeId2 &other) const
Operator for union

Public Members

vtkm::RangeId X
The range of values in the X direction.

The vtkm::RangeId struct provides the minimum and maximum along that axis.

vtkm::RangeId Y
The range of values in the Y direction.

The vtkm::RangeId struct provides the minimum and maximum along that axis.

struct RangeId3
Represent 3D integer range.

vtkm::RangeId3 is a helper class for representing a 3D range of integer values. The typical use of this class is
to express a box of indices in the x, y, and z directions.

RangeId3 also contains several helper functions for computing and maintaining the range.

278 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

RangeId3() = default
Construct an empty 3D range.

inline RangeId3(const vtkm::RangeId &xrange, const vtkm::RangeId &yrange, const vtkm::RangeId
&zrange)

Construct a range with the given x, y, and z directions.

inline RangeId3(vtkm::Id minX, vtkm::Id maxX, vtkm::Id minY, vtkm::Id maxY, vtkm::Id minZ, vtkm::Id
maxZ)

Construct a range with the given minimum (inclusive) and maximum (exclusive) points.

inline explicit RangeId3(const vtkm::Id range[6])
Initialize range with an array of 6 values in the order xmin, xmax, ymin, ymax, zmin, zmax.

inline RangeId3(const vtkm::Id3 &min, const vtkm::Id3 &max)
Initialize range with the minimum and the maximum corners.

inline bool IsNonEmpty() const
Determine if the range is non-empty.

IsNonEmpty returns true if the range is non-empty.

inline bool Contains(const vtkm::Id3 &val) const
Determines if an Id3 value is within the range.

inline vtkm::Id3 Center() const
Returns the center of the range.

Center computes the middle of the range.

template<typename T>
inline void Include(const vtkm::Vec<T , 3> &point)

Expand range to include a value.

This version of Include expands the range just enough to include the given value. If the range already
include this value, then nothing is done.

inline void Include(const vtkm::RangeId3 &range)
Expand range to include other range.

This version of Include expands the range just enough to include the other range. Essentially it is the
union of the two ranges.

inline vtkm::RangeId3 Union(const vtkm::RangeId3 &other) const
Return the union of this and another range.

This is a nondestructive form of Include.

inline vtkm::RangeId3 operator+(const vtkm::RangeId3 &other) const
Operator for union

20.5. Index Ranges 279

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Members

vtkm::RangeId X
The range of values in the X direction.

The vtkm::RangeId struct provides the minimum and maximum along that axis.

vtkm::RangeId Y
The range of values in the Y direction.

The vtkm::RangeId struct provides the minimum and maximum along that axis.

vtkm::RangeId Z
The range of values in the Z direction.

The vtkm::RangeId struct provides the minimum and maximum along that axis.

20.6 Traits

When using templated types, it is often necessary to get information about the type or specialize code based on general
properties of the type. VTK-m uses traits classes to publish and retrieve information about types. A traits class is
simply a templated structure that provides type aliases for tag structures, empty types used for identification. The traits
classes might also contain constant numbers and helpful static functions. See Effective C++ Third Edition by Scott
Meyers for a description of traits classes and their uses.

20.6.1 Type Traits

The vtkm::TypeTraits templated class provides basic information about a core type. These type traits are available
for all the basic C++ types as well as the core VTK-m types described in Chapter 4 (Base Types). vtkm::TypeTraits
contains the following elements.

template<typename T>

class TypeTraits
The TypeTraits class provides helpful compile-time information about the basic types used in VTKm (and a few
others for convenience).

The majority of TypeTraits contents are typedefs to tags that can be used to easily override behavior of called
functions.

Subclassed by vtkm::TypeTraits< const T >

Public Types

using NumericTag = vtkm::TypeTraitsUnknownTag
A tag to determine whether the type is integer or real.

This tag is either TypeTraitsRealTag or TypeTraitsIntegerTag.

280 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

using DimensionalityTag = vtkm::TypeTraitsUnknownTag
A tag to determine whether the type has multiple components.

This tag is either TypeTraitsScalarTag or TypeTraitsVectorTag. Scalars can also be treated as vectors with
VecTraits.

Public Static Functions

static inline T ZeroInitialization()
A static function that returns 0 (or the closest equivalent to it) for the given type.

The vtkm::TypeTraits::NumericTag will be an alias for one of the following tags.

struct TypeTraitsRealTag
Tag used to identify types that store real (floating-point) numbers.

A TypeTraits class will typedef this class to NumericTag if it stores real numbers (or vectors of real numbers).

struct TypeTraitsIntegerTag
Tag used to identify types that store integer numbers.

A TypeTraits class will typedef this class to NumericTag if it stores integer numbers (or vectors of integers).

The vtkm::TypeTraits::DimensionalityTag will be an alias for one of the following tags.

struct TypeTraitsScalarTag
Tag used to identify 0 dimensional types (scalars).

Scalars can also be treated like vectors when used with VecTraits. A TypeTraits class will typedef this class to
DimensionalityTag.

struct TypeTraitsVectorTag
Tag used to identify 1 dimensional types (vectors).

A TypeTraits class will typedef this class to DimensionalityTag.

If for some reason one of these tags do not apply, vtkm::TypeTraitsUnknownTag will be used.

struct TypeTraitsUnknownTag
Tag used to identify types that aren’t Real, Integer, Scalar or Vector.

The definition of vtkm::TypeTraits for vtkm::Float32 could like something like this.

Example 8: Example definition of
vtkm::TypeTraits<vtkm::Float32>.

1 namespace vtkm {
2

3 template<>
4 struct TypeTraits<vtkm::Float32>
5 {
6 using NumericTag = vtkm::TypeTraitsRealTag;
7 using DimensionalityTag = vtkm::TypeTraitsScalarTag;

(continues on next page)

20.6. Traits 281

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

8

9 VTKM_EXEC_CONT
10 static vtkm::Float32 ZeroInitialization() { return vtkm::Float32(0); }
11 };
12

13 }

Here is a simple example of using vtkm::TypeTraits to implement a generic function that behaves like the remainder
operator (%) for all types including floating points and vectors.

Example 9: Using vtkm::TypeTraits for a generic remainder.

1 #include <vtkm/TypeTraits.h>
2

3 #include <vtkm/Math.h>
4

5 template<typename T>
6 T AnyRemainder(const T& numerator, const T& denominator);
7

8 namespace detail
9 {

10

11 template<typename T>
12 T AnyRemainderImpl(const T& numerator,
13 const T& denominator,
14 vtkm::TypeTraitsIntegerTag,
15 vtkm::TypeTraitsScalarTag)
16 {
17 return numerator % denominator;
18 }
19

20 template<typename T>
21 T AnyRemainderImpl(const T& numerator,
22 const T& denominator,
23 vtkm::TypeTraitsRealTag,
24 vtkm::TypeTraitsScalarTag)
25 {
26 // The VTK-m math library contains a Remainder function that operates on
27 // floating point numbers.
28 return vtkm::Remainder(numerator, denominator);
29 }
30

31 template<typename T, typename NumericTag>
32 T AnyRemainderImpl(const T& numerator,
33 const T& denominator,
34 NumericTag,
35 vtkm::TypeTraitsVectorTag)
36 {
37 T result;
38 for (int componentIndex = 0; componentIndex < T::NUM_COMPONENTS; componentIndex++)
39 {
40 result[componentIndex] =

(continues on next page)

282 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

41 AnyRemainder(numerator[componentIndex], denominator[componentIndex]);
42 }
43 return result;
44 }
45

46 } // namespace detail
47

48 template<typename T>
49 T AnyRemainder(const T& numerator, const T& denominator)
50 {
51 return detail::AnyRemainderImpl(numerator,
52 denominator,
53 typename vtkm::TypeTraits<T>::NumericTag(),
54 typename vtkm::TypeTraits<T>::DimensionalityTag());
55 }

20.6.2 Vector Traits

The templated vtkm::Vec class contains several items for introspection (such as the component type and its size).
However, there are other types that behave similarly to vtkm::Vec objects but have different ways to perform this
introspection.

For example, VTK-m contains Vec-like objects that essentially behave the same but might have different features. Also,
there may be reason to interchangeably use basic scalar values, like an integer or floating point number, with vectors. To
provide a consistent interface to access these multiple types that represents vectors, the vtkm::VecTraits templated
class provides information and accessors to vector types.It contains the following elements.

template<class T>

struct VecTraits
Traits that can be queried to treat any type as a Vec.

The VecTraits class gives several static members that define how to use a given type as a vector. This is useful
for templated functions and methods that have a parameter that could be either a standard scalar type or a Vec or
some other Vec-like object. When using this class, scalar objects are treated like a Vec of size 1.

The default implementation of this template treats the type as a scalar. Types that actually behave like vectors
should specialize this template to provide the proper information.

Subclassed by vtkm::VecTraits< T & >, vtkm::VecTraits< T * >, vtkm::VecTraits< const T & >, vtkm::VecTraits<
const T >, vtkm::internal::SafeVecTraits< T >

Public Types

using ComponentType = T
Type of the components in the vector.

If the type is really a scalar, then the component type is the same as the scalar type.

using BaseComponentType = T
Base component type in the vector.

20.6. Traits 283

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Similar to ComponentType except that for nested vectors (e.g. Vec<Vec<T, M>, N>), it returns the base
scalar type at the end of the composition (T in this example).

using HasMultipleComponents = vtkm::VecTraitsTagSingleComponent
A tag specifying whether this vector has multiple components (i.e.

is a “real” vector).

This type is set to either vtkm::VecTraitsTagSingleComponent if the vector length is size 1 or
vtkm::VecTraitsTagMultipleComponents otherwise. This tag can be useful for creating special-
ized functions when a vector is really just a scalar. If the vector type is of variable size (that is,
IsSizeStatic is vtkm::VecTraitsTagSizeVariable), then HasMultipleComponents might be
vtkm::VecTraitsTagMultipleComponents even when at run time there is only one component.

using IsSizeStatic = vtkm::VecTraitsTagSizeStatic
A tag specifying whether the size of this vector is known at compile time.

If set to VecTraitsTagSizeStatic, then NUM_COMPONENTS is set. If set to
VecTraitsTagSizeVariable, then the number of components is not known at compile time and
must be queried with GetNumberOfComponents.

template<typename NewComponentType>

using ReplaceComponentType = NewComponentType
Get a vector of the same type but with a different component.

This type resolves to another vector with a different component type. For example,
vtkm::VecTraits<vtkm::Vec<T, N>>::ReplaceComponentType<T2> is vtkm::Vec<T2, N>. This
replacement is not recursive. So VecTraits<Vec<Vec<T, M>, N>::ReplaceComponentType<T2> is
vtkm::Vec<T2, N>.

template<typename NewComponentType>

using ReplaceBaseComponentType = NewComponentType
Get a vector of the same type but with a different base component.

This type resolves to another vector with a different base component type. The replacement is recursive
for nested types. For example, VecTraits<Vec<Vec<T, M>, N>::ReplaceBaseComponentType<T2>
is Vec<Vec<T2, M>, N>.

Public Static Functions

static inline constexpr vtkm::IdComponent GetNumberOfComponents(const T&)
Returns the number of components in the given vector.

The result of GetNumberOfComponents() is the same value of NUM_COMPONENTS for vector types
that have a static size (that is, IsSizeStatic is vtkm::VecTraitsTagSizeStatic). But unlike
NUM_COMPONENTS, GetNumberOfComponents() works for vectors of any type.

static inline const ComponentType &GetComponent(const T &vector, vtkm::IdComponent)
Returns the value in a given component of the vector.

static inline ComponentType &GetComponent(T &vector, vtkm::IdComponent)
Returns the value in a given component of the vector.

284 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline void SetComponent(T &vector, vtkm::IdComponent, ComponentType value)
Changes the value in a given component of the vector.

template<vtkm::IdComponent destSize>
static inline void CopyInto(const T &src, vtkm::Vec<ComponentType, destSize> &dest)

Copies the components in the given vector into a given Vec object.

Public Static Attributes

static constexpr vtkm::IdComponent NUM_COMPONENTS = 1
Number of components in the vector.

This is only defined for vectors of a static size. That is, NUM_COMPONENTS is not available when
IsSizeStatic is set to vtkm::VecTraitsTagSizeVariable.

The vtkm::VecTraits::HasMultipleComponents could be one of the following tags.

struct VecTraitsTagMultipleComponents
A tag for vectors that are “true” vectors (i.e.

have more than one component).

struct VecTraitsTagSingleComponent
A tag for vectors that are really just scalars (i.e.

have only one component)

The vtkm::VecTraits::IsSizeStatic could be one of the following tags.

struct VecTraitsTagSizeStatic
A tag for vectors where the number of components are known at compile time.

struct VecTraitsTagSizeVariable
A tag for vectors where the number of components are not determined until run time.

The definition of vtkm::VecTraits for vtkm::Id3 could look something like this.

Example 10: Example definition of vtkm::VecTraits<vtkm::Id3>.

1 namespace vtkm {
2

3 template<>
4 struct VecTraits<vtkm::Id3>
5 {
6 using ComponentType = vtkm::Id;
7 using BaseComponentType = vtkm::Id;
8 static const int NUM_COMPONENTS = 3;
9 using IsSizeStatic = vtkm::VecTraitsTagSizeStatic;

10 using HasMultipleComponents = vtkm::VecTraitsTagMultipleComponents;
11

12 VTKM_EXEC_CONT
13 static vtkm::IdComponent GetNumberOfComponents(const vtkm::Id3&)
14 {

(continues on next page)

20.6. Traits 285

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

15 return NUM_COMPONENTS;
16 }
17

18 VTKM_EXEC_CONT
19 static const vtkm::Id& GetComponent(const vtkm::Id3& vector, int component)
20 {
21 return vector[component];
22 }
23 VTKM_EXEC_CONT
24 static vtkm::Id& GetComponent(vtkm::Id3& vector, int component)
25 {
26 return vector[component];
27 }
28

29 VTKM_EXEC_CONT
30 static void SetComponent(vtkm::Id3& vector, int component, vtkm::Id value)
31 {
32 vector[component] = value;
33 }
34

35 template<typename NewComponentType>
36 using ReplaceComponentType = vtkm::Vec<NewComponentType, 3>;
37

38 template<typename NewComponentType>
39 using ReplaceBaseComponentType = vtkm::Vec<NewComponentType, 3>;
40

41 template<vtkm::IdComponent DestSize>
42 VTKM_EXEC_CONT static void CopyInto(const vtkm::Id3& src,
43 vtkm::Vec<vtkm::Id, DestSize>& dest)
44 {
45 for (vtkm::IdComponent index = 0; (index < NUM_COMPONENTS) && (index < DestSize);
46 index++)
47 {
48 dest[index] = src[index];
49 }
50 }
51 };
52

53 } // namespace vtkm

The real power of vector traits is that they simplify creating generic operations on any type that can look like a vector.
This includes operations on scalar values as if they were vectors of size one. The following code uses vector traits to
simplify the implementation of less functors that define an ordering that can be used for sorting and other operations.

Example 11: Using vtkm::VecTraits for less functors.

1 #include <vtkm/VecTraits.h>
2

3 // This functor provides a total ordering of vectors. Every compared vector
4 // will be either less, greater, or equal (assuming all the vector components
5 // also have a total ordering).
6 template<typename T>

(continues on next page)

286 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

7 struct LessTotalOrder
8 {
9 VTKM_EXEC_CONT

10 bool operator()(const T& left, const T& right)
11 {
12 for (int index = 0; index < vtkm::VecTraits<T>::NUM_COMPONENTS; index++)
13 {
14 using ComponentType = typename vtkm::VecTraits<T>::ComponentType;
15 const ComponentType& leftValue = vtkm::VecTraits<T>::GetComponent(left, index);
16 const ComponentType& rightValue = vtkm::VecTraits<T>::GetComponent(right, index);
17 if (leftValue < rightValue)
18 {
19 return true;
20 }
21 if (rightValue < leftValue)
22 {
23 return false;
24 }
25 }
26 // If we are here, the vectors are equal (or at least equivalent).
27 return false;
28 }
29 };
30

31 // This functor provides a partial ordering of vectors. It returns true if and
32 // only if all components satisfy the less operation. It is possible for
33 // vectors to be neither less, greater, nor equal, but the transitive closure
34 // is still valid.
35 template<typename T>
36 struct LessPartialOrder
37 {
38 VTKM_EXEC_CONT
39 bool operator()(const T& left, const T& right)
40 {
41 for (int index = 0; index < vtkm::VecTraits<T>::NUM_COMPONENTS; index++)
42 {
43 using ComponentType = typename vtkm::VecTraits<T>::ComponentType;
44 const ComponentType& leftValue = vtkm::VecTraits<T>::GetComponent(left, index);
45 const ComponentType& rightValue = vtkm::VecTraits<T>::GetComponent(right, index);
46 if (!(leftValue < rightValue))
47 {
48 return false;
49 }
50 }
51 // If we are here, all components satisfy less than relation.
52 return true;
53 }
54 };

20.6. Traits 287

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

20.7 List Templates

VTK-m internally uses template metaprogramming, which utilizes C++ templates to run source-generating programs,
to customize code to various data and compute platforms. One basic structure often uses with template metaprogram-
ming is a list of class names (also sometimes called a tuple or vector, although both of those names have different
meanings in VTK-m).

Many VTK-m users only need predefined lists, such as the type lists specified in Section 20.7.2 (Type Lists). Those
users can skip most of the details of this section. However, it is sometimes useful to modify lists, create new lists, or
operate on lists, and these usages are documented here.

20.7.1 Building Lists

A basic list is defined with the vtkm::List template.

template<typename ...Ts>

struct List
A template used to hold a list of types.

List is an empty struct that is used to hold a list of types as its template arguments. VTK-m provides templated
types that allows a List to be manipulated and used in numerous ways.

It is common (but not necessary) to use the using keyword to define an alias for a list with a particular meaning.

Example 12: Creating lists of types.

1 #include <vtkm/List.h>
2

3 // Placeholder classes representing things that might be in a template
4 // metaprogram list.
5 class Foo;
6 class Bar;
7 class Baz;
8 class Qux;
9 class Xyzzy;

10

11 // The names of the following tags are indicative of the lists they contain.
12

13 using FooList = vtkm::List<Foo>;
14

15 using FooBarList = vtkm::List<Foo, Bar>;
16

17 using BazQuxXyzzyList = vtkm::List<Baz, Qux, Xyzzy>;
18

19 using QuxBazBarFooList = vtkm::List<Qux, Baz, Bar, Foo>;

VTK-m defines some special and convenience versions of vtkm::List.

using vtkm::ListEmpty = vtkm::List<>
A convenience type for an empty list.

using vtkm::ListUniversal = vtkm::List<detail::UniversalTypeTag>
A special type for a list that represents holding all potential values.

288 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Note: This list cannot be used with ForEach and some list transforms for obvious reasons.

20.7.2 Type Lists

One of the major use cases for template metaprogramming lists in VTK-m is to identify a set of potential data types
for arrays. The vtkm/TypeList.h header contains predefined lists for known VTK-m types. The following lists are
provided.

using vtkm::TypeListId = vtkm::List<vtkm::Id>
A list containing the type vtkm::Id.

using vtkm::TypeListId2 = vtkm::List<vtkm::Id2>
A list containing the type vtkm::Id2.

using vtkm::TypeListId3 = vtkm::List<vtkm::Id3>
A list containing the type vtkm::Id3.

using vtkm::TypeListId4 = vtkm::List<vtkm::Id4>
A list containing the type vtkm::Id4.

using vtkm::TypeListIdComponent = vtkm::List<vtkm::IdComponent>
A list containing the type vtkm::IdComponent.

using vtkm::TypeListIndex = vtkm::List<vtkm::Id, vtkm::Id2, vtkm::Id3>
A list containing types used to index arrays.

Contains vtkm::Id, vtkm::Id2, and vtkm::Id3.

using vtkm::TypeListFieldScalar = vtkm::List<vtkm::Float32, vtkm::Float64>
A list containing types used for scalar fields.

Specifically, contains floating point numbers of different widths (i.e. vtkm::Float32 and vtkm::Float64).

using vtkm::TypeListFieldVec2 = vtkm::List<vtkm::Vec2f_32, vtkm::Vec2f_64>
A list containing types for values for fields with two dimensional vectors.

using vtkm::TypeListFieldVec3 = vtkm::List<vtkm::Vec3f_32, vtkm::Vec3f_64>
A list containing types for values for fields with three dimensional vectors.

using vtkm::TypeListFieldVec4 = vtkm::List<vtkm::Vec4f_32, vtkm::Vec4f_64>
A list containing types for values for fields with four dimensional vectors.

using vtkm::TypeListFloatVec = vtkm::List<vtkm::Vec2f_32, vtkm::Vec2f_64, vtkm::Vec3f_32, vtkm::Vec3f_64,
vtkm::Vec4f_32, vtkm::Vec4f_64>

A list containing common types for floating-point vectors.

Specifically contains floating point vectors of size 2, 3, and 4 with floating point components. Scalars are not
included.

20.7. List Templates 289

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

using vtkm::TypeListField = vtkm::List<vtkm::Float32, vtkm::Float64, vtkm::Vec2f_32, vtkm::Vec2f_64,
vtkm::Vec3f_32, vtkm::Vec3f_64, vtkm::Vec4f_32, vtkm::Vec4f_64>

A list containing common types for values in fields.

Specifically contains floating point scalars and vectors of size 2, 3, and 4 with floating point components.

using vtkm::TypeListScalarAll = vtkm::List<vtkm::Int8, vtkm::UInt8, vtkm::Int16, vtkm::UInt16, vtkm::Int32,
vtkm::UInt32, vtkm::Int64, vtkm::UInt64, vtkm::Float32, vtkm::Float64>

A list of all scalars defined in vtkm/Types.h.

A scalar is a type that holds a single number. This should containing all true variations of scalars, but there might
be some arithmetic C types not included. For example, this list contains signed char, and unsigned char,
but not char as one of those types will behave the same as it. Two of the three types behave the same, but be
aware that template resolution will treat them differently.

using vtkm::TypeListBaseC = vtkm::ListAppend<vtkm::TypeListScalarAll, vtkm::List<bool, char, signed long,
unsigned long>>

using vtkm::TypeListVecCommon = vtkm::List<vtkm::Vec2ui_8, vtkm::Vec2i_32, vtkm::Vec2i_64,
vtkm::Vec2f_32, vtkm::Vec2f_64, vtkm::Vec3ui_8, vtkm::Vec3i_32, vtkm::Vec3i_64, vtkm::Vec3f_32,
vtkm::Vec3f_64, vtkm::Vec4ui_8, vtkm::Vec4i_32, vtkm::Vec4i_64, vtkm::Vec4f_32, vtkm::Vec4f_64>

A list of the most commonly use Vec classes.

Specifically, these are vectors of size 2, 3, or 4 containing either unsigned bytes, signed integers of 32 or 64 bits,
or floating point values of 32 or 64 bits.

using vtkm::TypeListVecAll = vtkm::ListAppend<vtkm::TypeListVecCommon,
vtkm::internal::TypeListVecUncommon>

A list of all vector classes with standard types as components and lengths between 2 and 4.

using vtkm::TypeListAll = vtkm::ListAppend<vtkm::TypeListScalarAll, vtkm::TypeListVecAll>
A list of all basic types listed in vtkm/Types.h.

Does not include all possible VTK-m types like arbitrarily typed and sized Vecs (only up to length 4) or math
types like matrices.

using vtkm::TypeListCommon = vtkm::List<vtkm::UInt8, vtkm::Int32, vtkm::Int64, vtkm::Float32, vtkm::Float64,
vtkm::Vec3f_32, vtkm::Vec3f_64>

A list of the most commonly used types across multiple domains.

Includes integers, floating points, and 3 dimensional vectors of floating points.

If these lists are not sufficient, it is possible to build new type lists using the existing type lists and the list bases from
Section 20.7.1 (Building Lists) as demonstrated in the following example.

Example 13: Defining new type lists.

1 // A list of 2D vector types.
2 using Vec2List = vtkm::List<vtkm::Vec2f_32, vtkm::Vec2f_64>;
3

4 // An application that uses 2D geometry might commonly encounter this list of
5 // types.
6 using MyCommonTypes = vtkm::ListAppend<Vec2List, vtkm::TypeListCommon>;

290 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The vtkm/cont/DefaultTypes.h header defines a macro named VTKM_DEFAULT_TYPE_LIST that defines a default
list of types to use when, for example, determining the type of a field array. This macro can change depending on
VTK-m compile options.

20.7.3 Querying Lists

vtkm/List.h contains some templated classes to help get information about a list type. This are particularly useful
for lists that are provided as templated parameters for which you do not know the exact type.

Is a List

The VTKM_IS_LIST does a compile-time check to make sure a particular type is actually a vtkm::List of types. If
the compile-time check fails, then a build error will occur. This is a good way to verify that a templated class or method
that expects a list actually gets a list.

VTKM_IS_LIST(type)
Checks that the argument is a proper list.

This is a handy concept check for functions and classes to make sure that a template argument is actually a device
adapter tag. (You can get weird errors elsewhere in the code when a mistake is made.)

Example 14: Checking that a template parameter is a valid vtkm::List.

1 template<typename List>
2 class MyImportantClass
3 {
4 VTKM_IS_LIST(List);
5 // Implementation...
6 };
7

8 void DoImportantStuff()
9 {

10 MyImportantClass<vtkm::List<vtkm::Id>> important1; // This compiles fine
11 MyImportantClass<vtkm::Id> important2; // COMPILE ERROR: vtkm::Id is not a list

List Size

The size of a list can be determined by using the vtkm::ListSize template. The type of the template will resolve to a
std::integral_constant<vtkm::IdComponent,N> where N is the number of types in the list. vtkm::ListSize
does not work with vtkm::ListUniversal.

template<typename List>

using vtkm::ListSize = typename detail::ListSizeImpl<List>::type
Becomes an std::integral_constant containing the number of types in a list.

Example 15: Getting the size of a vtkm::List.

1 using MyList = vtkm::List<vtkm::Int8, vtkm::Int32, vtkm::Int64>;
2

3 constexpr vtkm::IdComponent myListSize = vtkm::ListSize<MyList>::value;
4 // myListSize is 3

20.7. List Templates 291

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

List Contains

The vtkm::ListHas template can be used to determine if a vtkm::List contains a particular type. vtkm::ListHas
takes two template parameters. The first parameter is a form of vtkm::List. The second parameter is any type to
check to see if it is in the list. If the type is in the list, then vtkm::ListHas resolves to std::true_type. Otherwise
it resolves to std::false_type. vtkm::ListHas always returns true for vtkm::ListUniversal.

template<typename List, typename T>

using vtkm::ListHas = typename detail::ListHasImpl<List, T>::type
Checks to see if the given T is in the list pointed to by List.

Becomes std::true_type if the T is in List. std::false_type otherwise.

Example 16: Determining if a vtkm::List contains a particular type.

1 using MyList = vtkm::List<vtkm::Int8, vtkm::Int16, vtkm::Int32, vtkm::Int64>;
2

3 constexpr bool hasInt = vtkm::ListHas<MyList, int>::value;
4 // hasInt is true
5

6 constexpr bool hasFloat = vtkm::ListHas<MyList, float>::value;
7 // hasFloat is false

List Indices

The vtkm::ListIndexOf template can be used to get the index of a particular type in a vtkm::List.
vtkm::ListIndexOf takes two template parameters. The first parameter is a form of vtkm::List. The sec-
ond parameter is any type to check to see if it is in the list. The type of the template will resolve to a
std::integral_constant<vtkm::IdComponent,N> where N is the index of the type. If the requested type is not
in the list, then vtkm::ListIndexOf becomes std::integral_constant<vtkm::IdComponent,-1>.

template<typename List, typename T>

using vtkm::ListIndexOf = typename detail::ListIndexOfImpl<List, T>::type
Finds the index of a given type.

Becomes a std::integral_constant for the index of the given type. If the given type is not in the list, the
value is set to -1.

Conversely, the vtkm::ListAt template can be used to get the type for a particular index. The two template parameters
for vtkm::ListAt are the vtkm::List and an index for the list.

template<typename List, vtkm::IdComponent Index>

using vtkm::ListAt = typename detail::ListAtImpl<List, Index>::type
Finds the type at the given index.

This becomes the type of the list at the given index.

Neither vtkm::ListIndexOf nor vtkm::ListAt works with vtkm::ListUniversal.

Example 17: Using indices with vtkm::List.

1 using MyList = vtkm::List<vtkm::Int8, vtkm::Int32, vtkm::Int64>;
2

3 constexpr vtkm::IdComponent indexOfInt8 = vtkm::ListIndexOf<MyList, vtkm::Int8>::value;
(continues on next page)

292 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

4 // indexOfInt8 is 0
5 constexpr vtkm::IdComponent indexOfInt32 =
6 vtkm::ListIndexOf<MyList, vtkm::Int32>::value;
7 // indexOfInt32 is 1
8 constexpr vtkm::IdComponent indexOfInt64 =
9 vtkm::ListIndexOf<MyList, vtkm::Int64>::value;

10 // indexOfInt64 is 2
11 constexpr vtkm::IdComponent indexOfFloat32 =
12 vtkm::ListIndexOf<MyList, vtkm::Float32>::value;
13 // indexOfFloat32 is -1 (not in list)
14

15 using T0 = vtkm::ListAt<MyList, 0>; // T0 is vtkm::Int8
16 using T1 = vtkm::ListAt<MyList, 1>; // T1 is vtkm::Int32
17 using T2 = vtkm::ListAt<MyList, 2>; // T2 is vtkm::Int64

20.7.4 Operating on Lists

In addition to providing the base templates for defining and querying lists, vtkm/List.h also contains several features
for operating on lists.

Appending Lists

The vtkm::ListAppend template joins together 2 or more vtkm::List types. The items are concatenated in the
order provided to vtkm::ListAppend . vtkm::ListAppend does not work with vtkm::ListUniversal.

template<typename ...Lists>

using vtkm::ListAppend = typename detail::ListAppendImpl<Lists...>::type
Concatinates a set of lists into a single list.

Note that this does not work correctly with vtkm::ListUniversal.

20.7. List Templates 293

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 18: Appending vtkm::List types.

1 using BigTypes = vtkm::List<vtkm::Int64, vtkm::Float64>;
2 using MediumTypes = vtkm::List<vtkm::Int32, vtkm::Float32>;
3 using SmallTypes = vtkm::List<vtkm::Int8>;
4

5 using SmallAndBigTypes = vtkm::ListAppend<SmallTypes, BigTypes>;
6 // SmallAndBigTypes is vtkm::List<vtkm::Int8, vtkm::Int64, vtkm::Float64>
7

8 using AllMyTypes = vtkm::ListAppend<BigTypes, MediumTypes, SmallTypes>;
9 // AllMyTypes is

10 // vtkm::List<vtkm::Int64, vtkm::Float64, vtkm::Int32, vtkm::Float32, vtkm::Int8>

Intersecting Lists

The vtkm::ListIntersect template takes two vtkm::List types and becomes a vtkm::List containing all types
in both lists. If one of the lists is vtkm::ListUniversal, the contents of the other list used.

template<typename List1, typename List2>

using vtkm::ListIntersect = typename detail::ListIntersectImpl<List1, List2>::type
Constructs a list containing types present in all lists.

Example 19: Intersecting vtkm::List types.

1 using SignedInts = vtkm::List<vtkm::Int8, vtkm::Int16, vtkm::Int32, vtkm::Int64>;
2 using WordTypes = vtkm::List<vtkm::Int32, vtkm::UInt32, vtkm::Int64, vtkm::UInt64>;
3

4 using SignedWords = vtkm::ListIntersect<SignedInts, WordTypes>;
5 // SignedWords is vtkm::List<vtkm::Int32, vtkm::Int64>

Resolve a Template with all Types in a List

The vtkm::ListApply template transfers all of the types in a vtkm::List to another template. The first template
argument of vtkm::ListApply is the vtkm::List to apply. The second template argument is another template
to apply to. vtkm::ListApply becomes an instance of the passed template with all the types in the vtkm::List.
vtkm::ListApply can be used to convert a vtkm::List to some other template. vtkm::ListApply cannot be used
with vtkm::ListUniversal.

template<typename List, template<typename...> class Target>

using vtkm::ListApply = typename detail::ListApplyImpl<List, Target>::type
Applies the list of types to a template.

Given a ListTag and a templated class, returns the class instantiated with the types represented by the ListTag.

Example 20: Applying a vtkm::List to another template.

1 using MyList = vtkm::List<vtkm::Id, vtkm::Id3, vtkm::Vec3f>;
2

3 using MyTuple = vtkm::ListApply<MyList, std::tuple>;
4 // MyTuple is std::tuple<vtkm::Id, vtkm::Id3, vtkm::Vec3f>

294 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Transform Each Type in a List

The vtkm::ListTransform template applies each item in a vtkm::List to another template and constructs a
list from all these applications. The first template argument of vtkm::ListTransform is the vtkm::List to ap-
ply. The second template argument is another template to apply to. vtkm::ListTransform becomes an instance
of a new vtkm::List containing the passed template each type. vtkm::ListTransform cannot be used with
vtkm::ListUniversal.

template<typename List, template<typename> class Transform>

using vtkm::ListTransform = typename detail::ListTransformImpl<List, Transform>::type
Constructs a list containing all types in a source list applied to a transform template.

Example 21: Transforming a vtkm::List using a custom template.

1 using MyList = vtkm::List<vtkm::Int32, vtkm::Float32>;
2

3 template<typename T>
4 using MakeVec = vtkm::Vec<T, 3>;
5

6 using MyVecList = vtkm::ListTransform<MyList, MakeVec>;
7 // MyVecList is vtkm::List<vtkm::Vec<vtkm::Int32, 3>, vtkm::Vec<vtkm::Float32, 3>>

Conditionally Removing Items from a List

The vtkm::ListRemoveIf template removes items from a vtkm::List given a predicate. The first template argu-
ment of vtkm::ListRemoveIf is the vtkm::List. The second argument is another template that is used as a predicate
to determine if the type should be removed or not. The predicate should become a type with a value member that is
a static true or false value. Any type in the list that the predicate evaluates to true is removed. vtkm::ListRemoveIf
cannot be used with vtkm::ListUniversal.

template<typename List, template<typename> class Predicate>

using vtkm::ListRemoveIf = typename detail::ListRemoveIfImpl<List, Predicate>::type
Takes an existing List and a predicate template that is applied to each type in the List.

Any type in the List that has a value element equal to true (the equivalent of std::true_type), that item will
be removed from the list. For example the following type

vtkm::ListRemoveIf<vtkm::List<int, float, long long, double>, std::is_integral>

resolves to a List that is equivalent to vtkm::List<float, double> because std::is_integral<int>
and std::is_integral<long long> resolve to std::true_type whereas std::is_integral<float>
and std::is_integral<double> resolve to std::false_type.

Example 22: Removing items from a vtkm::List.

1 using MyList =
2 vtkm::List<vtkm::Int64, vtkm::Float64, vtkm::Int32, vtkm::Float32, vtkm::Int8>;
3

4 using FilteredList = vtkm::ListRemoveIf<MyList, std::is_integral>;
5 // FilteredList is vtkm::List<vtkm::Float64, vtkm::Float32>

20.7. List Templates 295

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Combine all Pairs of Two Lists

The vtkm::ListCross takes two lists and performs a cross product of them. It does this by creating a new
vtkm::List that contains nested vtkm::List types, each of length 2 and containing all possible pairs of items in
the first list with items in the second list. vtkm::ListCross is often used in conjunction with another list process-
ing command, such as vtkm::ListTransform to build templated types of many combinations. vtkm::ListCross
cannot be used with vtkm::ListUniversal.

template<typename List1, typename List2>

using vtkm::ListCross = typename detail::ListCrossImpl<List1, List2>::type
Generates a list that is the cross product of two input lists.

The resulting list has the form of vtkm::List<vtkm::List<A1,B1>, vtkm::List<A1,B2>,...>

Example 23: Creating the cross product of 2 vtkm::List types.

1 using BaseTypes = vtkm::List<vtkm::Int8, vtkm::Int32, vtkm::Int64>;
2 using BoolCases = vtkm::List<std::false_type, std::true_type>;
3

4 using CrossTypes = vtkm::ListCross<BaseTypes, BoolCases>;
5 // CrossTypes is
6 // vtkm::List<vtkm::List<vtkm::Int8, std::false_type>,
7 // vtkm::List<vtkm::Int8, std::true_type>,
8 // vtkm::List<vtkm::Int32, std::false_type>,
9 // vtkm::List<vtkm::Int32, std::true_type>,

10 // vtkm::List<vtkm::Int64, std::false_type>,
11 // vtkm::List<vtkm::Int64, std::true_type>>
12

13 template<typename TypeAndIsVec>
14 using ListPairToType =
15 typename std::conditional<vtkm::ListAt<TypeAndIsVec, 1>::value,
16 vtkm::Vec<vtkm::ListAt<TypeAndIsVec, 0>, 3>,
17 vtkm::ListAt<TypeAndIsVec, 0>>::type;
18

19 using AllTypes = vtkm::ListTransform<CrossTypes, ListPairToType>;
20 // AllTypes is
21 // vtkm::List<vtkm::Int8,
22 // vtkm::Vec<vtkm::Int8, 3>,
23 // vtkm::Int32,
24 // vtkm::Vec<vtkm::Int32, 3>,
25 // vtkm::Int64,
26 // vtkm::Vec<vtkm::Int64, 3>>

Call a Function For Each Type in a List

The vtkm::ListForEach function takes a functor object and a vtkm::List. It then calls the functor object with
the default object of each type in the list. This is most typically used with C++ run-time type information to convert a
run-time polymorphic object to a statically typed (and possibly inlined) call.

template<typename Functor, typename ...Ts, typename ...Args>
void vtkm::ListForEach(Functor &&f, vtkm::List<Ts...>, Args&&... args)

For each typename represented by the list, call the functor with a default instance of that type.

296 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The following example shows a rudimentary version of converting a dynamically-typed array to a statically-typed
array similar to what is done in VTK-m classes like vtkm::cont::UnknownArrayHandle (which is documented in
Chapter~ref{chap:UnknownArrayHandle}).

Example 24: Converting dynamic types to static types with
vtkm::ListForEach .

1 struct MyArrayBase
2 {
3 // A virtual destructor makes sure C++ RTTI will be generated. It also helps
4 // ensure subclass destructors are called.
5 virtual ~MyArrayBase() {}
6 };
7

8 template<typename T>
9 struct MyArrayImpl : public MyArrayBase

10 {
11 std::vector<T> Array;
12 };
13

14 template<typename T>
15 void PrefixSum(std::vector<T>& array)
16 {
17 T sum(typename vtkm::VecTraits<T>::ComponentType(0));
18 for (typename std::vector<T>::iterator iter = array.begin(); iter != array.end();
19 iter++)
20 {
21 sum = sum + *iter;
22 *iter = sum;
23 }
24 }
25

26 struct PrefixSumFunctor
27 {
28 MyArrayBase* ArrayPointer;
29

30 PrefixSumFunctor(MyArrayBase* arrayPointer)
31 : ArrayPointer(arrayPointer)
32 {
33 }
34

35 template<typename T>
36 void operator()(T)
37 {
38 using ConcreteArrayType = MyArrayImpl<T>;
39 ConcreteArrayType* concreteArray =
40 dynamic_cast<ConcreteArrayType*>(this->ArrayPointer);
41 if (concreteArray != NULL)
42 {
43 PrefixSum(concreteArray->Array);
44 }
45 }
46 };
47

(continues on next page)

20.7. List Templates 297

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

48 void DoPrefixSum(MyArrayBase* array)
49 {
50 PrefixSumFunctor functor = PrefixSumFunctor(array);
51 vtkm::ListForEach(functor, vtkm::TypeListCommon());
52 }

20.8 Pair

VTK-m defines a vtkm::Pair templated object that behaves just like std::pair from the standard template li-
brary. The difference is that vtkm::Pair will work in both the execution and control environments, whereas the
STL std::pair does not always work in the execution environment.

template<typename T1, typename T2>

struct Pair
A vtkm::Pair is essentially the same as an STL pair object except that the methods (constructors and operators)
are defined to work in both the control and execution environments (whereas std::pair is likely to work only in
the control environment).

Public Types

using FirstType = T1
The type of the first object.

using SecondType = T2
The type of the second object.

using first_type = FirstType
The same as FirstType, but follows the naming convention of std::pair.

using second_type = SecondType
The same as SecondType, but follows the naming convention of std::pair.

Public Functions

Pair() = default

inline Pair(const FirstType &firstSrc, const SecondType &secondSrc)

inline Pair(FirstType &&firstSrc, SecondType &&secondSrc)
noexcept(noexcept(FirstType{std::declval<FirstType&&>()},
SecondType{std::declval<SecondType&&>()}))

Pair(const Pair&) = default

Pair(Pair&&) = default

template<typename U1, typename U2>

298 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline Pair(const vtkm::Pair<U1, U2> &src)

template<typename U1, typename U2>
inline Pair(vtkm::Pair<U1, U2> &&src) noexcept(noexcept(U1{std::declval<U1&&>()},

U2{std::declval<U2&&>()}))

template<typename U1, typename U2>
inline Pair(const std::pair<U1, U2> &src)

template<typename U1, typename U2>
inline Pair(std::pair<U1, U2> &&src) noexcept(noexcept(U1{std::declval<U1&&>()},

U2{std::declval<U2&&>()}))

vtkm::Pair<FirstType, SecondType> &operator=(const vtkm::Pair<FirstType, SecondType> &src) = default

vtkm::Pair<FirstType, SecondType> &operator=(vtkm::Pair<FirstType, SecondType> &&src) = default

inline bool operator==(const vtkm::Pair<FirstType, SecondType> &other) const

inline bool operator!=(const vtkm::Pair<FirstType, SecondType> &other) const

inline bool operator<(const vtkm::Pair<FirstType, SecondType> &other) const
Tests ordering on the first object, and then on the second object if the first are equal.

inline bool operator>(const vtkm::Pair<FirstType, SecondType> &other) const
Tests ordering on the first object, and then on the second object if the first are equal.

inline bool operator<=(const vtkm::Pair<FirstType, SecondType> &other) const
Tests ordering on the first object, and then on the second object if the first are equal.

inline bool operator>=(const vtkm::Pair<FirstType, SecondType> &other) const
Tests ordering on the first object, and then on the second object if the first are equal.

Public Members

FirstType first
The pair’s first object.

Note that this field breaks VTK-m’s naming conventions to make vtkm::Pair more compatible with std::pair.

SecondType second
The pair’s second object.

Note that this field breaks VTK-m’s naming conventions to make vtkm::Pair more compatible with std::pair.

The VTK-m version of vtkm::Pair supports the same types, fields, and operations as the STL version. VTK-m also
provides a vtkm::make_Pair() function for convenience.

template<typename T1, typename T2>
vtkm::Pair<typename std::decay<T1>::type, typename std::decay<T2>::type> vtkm::make_Pair(T1 &&v1, T2

&&v2)

20.8. Pair 299

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

20.9 Tuple

VTK-m defines a vtkm::Tuple templated object that behaves like std::tuple from the standard template library.
The main difference is that vtkm::Tuple will work in both the execution and control environments, whereas the STL
std::tuple does not always work in the execution environment.

template<typename ...Ts>

class Tuple
VTK-m replacement for std::tuple.

This function serves the same function as std::tuple and behaves similarly. However, this version of Tuple
works on devices that VTK-m supports. There are also some implementation details that makes compiling faster
for VTK-m use. We also provide some methods like Apply and ForEach that are helpful for several VTK-m
operations.

20.9.1 Defining and Constructing

vtkm::Tuple takes any number of template parameters that define the objects stored the tuple.

Example 25: Defining a vtkm::Tuple.

1 vtkm::Tuple<vtkm::Id, vtkm::Vec3f, vtkm::cont::ArrayHandle<vtkm::Int32>> myTuple;

You can construct a vtkm::Tuple with arguments that will be used to initialize the respective objects. As a conve-
nience, you can use vtkm::MakeTuple() to construct a vtkm::Tuple of types based on the arguments.

template<typename ...Ts>
auto vtkm::MakeTuple(Ts&&... args) -> vtkm::Tuple<typename std::decay<Ts>::type...>

Creates a new vtkm::Tuple with the given types.

template<typename ...Ts>
auto vtkm::make_tuple(Ts&&... args) -> decltype(vtkm::MakeTuple(std::forward<Ts>(args)...))

Compatible with std::make_tuple for vtkm::Tuple.

Example 26: Initializing values in a vtkm::Tuple.

1 // Initialize a tuple with 0, [0, 1, 2], and an existing ArrayHandle.
2 vtkm::Tuple<vtkm::Id, vtkm::Vec3f, vtkm::cont::ArrayHandle<vtkm::Float32>> myTuple1(
3 0, vtkm::Vec3f(0, 1, 2), array);
4

5 // Another way to create the same tuple.
6 auto myTuple2 = vtkm::MakeTuple(vtkm::Id(0), vtkm::Vec3f(0, 1, 2), array);

20.9.2 Querying

The size of a vtkm::Tuple can be determined by using the vtkm::TupleSize template, which resolves to an
std::integral_constant. The types at particular indices can be determined with vtkm::TupleElement.

template<typename TupleType>

using vtkm::TupleSize = std::integral_constant<vtkm::IdComponent, TupleType::Size>
Get the size of a tuple.

Given a vtkm::Tuple type, becomes a std::integral_constant of the type.

300 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

template<vtkm::IdComponent Index, typename TupleType>

using vtkm::TupleElement = typename detail::TupleElementImpl<Index, TupleType>::type
Becomes the type of the given index for the given vtkm::Tuple.

Example 27: Querying vtkm::Tuple types.

1 using TupleType = vtkm::Tuple<vtkm::Id, vtkm::Float32, vtkm::Float64>;
2

3 // Becomes 3
4 constexpr vtkm::IdComponent size = vtkm::TupleSize<TupleType>::value;
5

6 using FirstType = vtkm::TupleElement<0, TupleType>; // vtkm::Id
7 using SecondType = vtkm::TupleElement<1, TupleType>; // vtkm::Float32
8 using ThirdType = vtkm::TupleElement<2, TupleType>; // vtkm::Float64

The function vtkm::Get() can be used to retrieve an element from the vtkm::Tuple. vtkm::Get() returns a refer-
ence to the element, so you can set a vtkm::Tuple element by setting the return value of vtkm::Get().

template<vtkm::IdComponent Index, typename ...Ts>
auto vtkm::Get(const vtkm::Tuple<Ts...> &tuple)

Retrieve the object from a vtkm::Tuple at the given index.

template<vtkm::IdComponent Index, typename ...Ts>
auto vtkm::Get(vtkm::Tuple<Ts...> &tuple)

Retrieve the object from a vtkm::Tuple at the given index.

template<std::size_t Index, typename ...Ts>
auto vtkm::get(const vtkm::Tuple<Ts...> &tuple) ->

decltype(vtkm::Get<static_cast<vtkm::IdComponent>(Index)>(tuple))
Compatible with std::get for vtkm::Tuple.

template<std::size_t Index, typename ...Ts>
auto vtkm::get(vtkm::Tuple<Ts...> &tuple) ->

decltype(vtkm::Get<static_cast<vtkm::IdComponent>(Index)>(tuple))
Compatible with std::get for vtkm::Tuple.

20.9. Tuple 301

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 28: Retrieving values from a vtkm::Tuple.

1 auto myTuple = vtkm::MakeTuple(vtkm::Id3(0, 1, 2), vtkm::Vec3f(3, 4, 5));
2

3 // Gets the value [0, 1, 2]
4 vtkm::Id3 x = vtkm::Get<0>(myTuple);
5

6 // Changes the second object in myTuple to [6, 7, 8]
7 vtkm::Get<1>(myTuple) = vtkm::Vec3f(6, 7, 8);

20.9.3 For Each Tuple Value

The vtkm::ForEach() function takes a tuple and a function or functor and calls the function for each of the items in
the tuple. Nothing is returned from vtkm::ForEach(), and any return value from the function is ignored.

template<typename ...Ts, typename Function>
void vtkm::ForEach(const vtkm::Tuple<Ts...> &tuple, Function &&f)

Call a function with each value of the given tuple.

The function calls will be done in the order of the values in the vtkm::Tuple.

template<typename ...Ts, typename Function>
void vtkm::ForEach(vtkm::Tuple<Ts...> &tuple, Function &&f)

Call a function with each value of the given tuple.

The function calls will be done in the order of the values in the vtkm::Tuple.

vtkm::ForEach() can be used to check the validity of each item in a vtkm::Tuple.

Example 29: Using vtkm::Tuple::ForEach() to check the contents.

1 void CheckPositive(vtkm::Float64 x)
2 {
3 if (x < 0)
4 {
5 throw vtkm::cont::ErrorBadValue("Values need to be positive.");
6 }
7 }
8

9 // ...
10

11 vtkm::Tuple<vtkm::Float64, vtkm::Float64, vtkm::Float64> tuple(
12 CreateValue(0), CreateValue(1), CreateValue(2));
13

14 // Will throw an error if any of the values are negative.
15 vtkm::ForEach(tuple, CheckPositive);

vtkm::ForEach() can also be used to aggregate values in a vtkm::Tuple.

Example 30: Using vtkm::Tuple::ForEach() to aggregate.

1 struct SumFunctor
2 {
3 vtkm::Float64 Sum = 0;

(continues on next page)

302 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

4

5 template<typename T>
6 void operator()(const T& x)
7 {
8 this->Sum = this->Sum + static_cast<vtkm::Float64>(x);
9 }

10 };
11

12 // ...
13

14 vtkm::Tuple<vtkm::Float32, vtkm::Float64, vtkm::Id> tuple(
15 CreateValue(0), CreateValue(1), CreateValue(2));
16

17 SumFunctor sum;
18 vtkm::ForEach(tuple, sum);
19 vtkm::Float64 average = sum.Sum / 3;

The previous examples used an explicit struct as the functor for clarity. However, it is often less verbose to use a C++
lambda function.

Example 31: Using vtkm::Tuple::ForEach() to aggregate.

1 vtkm::Tuple<vtkm::Float32, vtkm::Float64, vtkm::Id> tuple(
2 CreateValue(0), CreateValue(1), CreateValue(2));
3

4 vtkm::Float64 sum = 0;
5 auto sumFunctor = [&sum](auto x) { sum += static_cast<vtkm::Float64>(x); };
6

7 vtkm::ForEach(tuple, sumFunctor);
8 vtkm::Float64 average = sum / 3;

20.9.4 Transform Each Tuple Value

The vtkm::Transform() function builds a new vtkm::Tuple by calling a function or functor on each of the items
in an existing vtkm::Tuple. The return value is placed in the corresponding part of the resulting vtkm::Tuple, and
the type is automatically created from the return type of the function.

template<typename TupleType, typename Function>
auto vtkm::Transform(const TupleType &&tuple, Function &&f) -> decltype(Apply(tuple,

detail::TupleTransformFunctor(), std::forward<Function>(f)))
Construct a new vtkm::Tuple by applying a function to each value.

The vtkm::Transform function builds a new vtkm::Tuple by calling a function or functor on each of the
items in the given tuple. The return value is placed in the corresponding part of the resulting Tuple, and the
type is automatically created from the return type of the function.

template<typename TupleType, typename Function>
auto vtkm::Transform(TupleType &&tuple, Function &&f) -> decltype(Apply(tuple,

detail::TupleTransformFunctor(), std::forward<Function>(f)))
Get the size of a tuple.

Given a vtkm::Tuple type, becomes a std::integral_constant of the type.

20.9. Tuple 303

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 32: Transforming a vtkm::Tuple.

1 struct GetReadPortalFunctor
2 {
3 template<typename Array>
4 typename Array::ReadPortalType operator()(const Array& array) const
5 {
6 VTKM_IS_ARRAY_HANDLE(Array);
7 return array.ReadPortal();
8 }
9 };

10

11 // ...
12

13 auto arrayTuple = vtkm::MakeTuple(array1, array2, array3);
14

15 auto portalTuple = vtkm::Transform(arrayTuple, GetReadPortalFunctor{});

20.9.5 Apply

The vtkm::Apply() function calls a function or functor using the objects in a vtkm::Tuple as the arguments. If the
function returns a value, that value is returned from vtkm::Apply().

template<typename ...Ts, typename Function, typename ...Args>
auto vtkm::Apply(const vtkm::Tuple<Ts...> &tuple, Function &&f, Args&&... args) ->

decltype(tuple.Apply(std::forward<Function>(f), std::forward<Args>(args)...))
Call a function with the values of a vtkm::Tuple as arguments.

If a vtkm::Tuple<A, B, C> is given with values a, b, and c, then f will be called as f(a, b, c).

Additional arguments can optionally be given to vtkm::Apply(). These arguments will be added to the begin-
ning of the arguments to the function.

The returned value of the function (if any) will be returned from vtkm::Apply().

template<typename ...Ts, typename Function, typename ...Args>
auto vtkm::Apply(vtkm::Tuple<Ts...> &tuple, Function &&f, Args&&... args) ->

decltype(tuple.Apply(std::forward<Function>(f), std::forward<Args>(args)...))
Call a function with the values of a vtkm::Tuple as arguments.

If a vtkm::Tuple<A, B, C> is given with values a, b, and c, then f will be called as f(a, b, c).

Additional arguments can optionally be given to vtkm::Apply(). These arguments will be added to the begin-
ning of the arguments to the function.

The returned value of the function (if any) will be returned from vtkm::Apply().

Example 33: Applying a vtkm::Tuple as arguments to a function.

1 struct AddArraysFunctor
2 {
3 template<typename Array1, typename Array2, typename Array3>
4 vtkm::Id operator()(Array1 inArray1, Array2 inArray2, Array3 outArray) const
5 {
6 VTKM_IS_ARRAY_HANDLE(Array1);

(continues on next page)

304 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

7 VTKM_IS_ARRAY_HANDLE(Array2);
8 VTKM_IS_ARRAY_HANDLE(Array3);
9

10 vtkm::Id length = inArray1.GetNumberOfValues();
11 VTKM_ASSERT(inArray2.GetNumberOfValues() == length);
12 outArray.Allocate(length);
13

14 auto inPortal1 = inArray1.ReadPortal();
15 auto inPortal2 = inArray2.ReadPortal();
16 auto outPortal = outArray.WritePortal();
17 for (vtkm::Id index = 0; index < length; ++index)
18 {
19 outPortal.Set(index, inPortal1.Get(index) + inPortal2.Get(index));
20 }
21

22 return length;
23 }
24 };
25

26 // ...
27

28 auto arrayTuple = vtkm::MakeTuple(array1, array2, array3);
29

30 vtkm::Id arrayLength = vtkm::Apply(arrayTuple, AddArraysFunctor{});

If additional arguments are given to vtkm::Apply(), they are also passed to the function (before the objects in the
vtkm::Tuple). This is helpful for passing state to the function.

Example 34: Using extra arguments with vtkm::Tuple::Apply().

1 struct ScanArrayLengthFunctor
2 {
3 template<vtkm::IdComponent N, typename Array, typename... Remaining>
4 vtkm::Vec<vtkm::Id, N + 1 + vtkm::IdComponent(sizeof...(Remaining))> operator()(
5 const vtkm::Vec<vtkm::Id, N>& partialResult,
6 const Array& nextArray,
7 const Remaining&... remainingArrays) const
8 {
9 vtkm::Vec<vtkm::Id, N + 1> nextResult;

10 std::copy(&partialResult[0], &partialResult[0] + N, &nextResult[0]);
11 nextResult[N] = nextResult[N - 1] + nextArray.GetNumberOfValues();
12 return (*this)(nextResult, remainingArrays...);
13 }
14

15 template<vtkm::IdComponent N>
16 vtkm::Vec<vtkm::Id, N> operator()(const vtkm::Vec<vtkm::Id, N>& result) const
17 {
18 return result;
19 }
20 };
21

22 // ...
(continues on next page)

20.9. Tuple 305

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

23

24 auto arrayTuple = vtkm::MakeTuple(array1, array2, array3);
25

26 vtkm::Vec<vtkm::Id, 4> sizeScan =
27 vtkm::Apply(arrayTuple, ScanArrayLengthFunctor{}, vtkm::Vec<vtkm::Id, 1>{ 0 });

20.10 Error Codes

For operations that occur in the control environment, VTK-m uses exceptions to report errors as described in Chapter
12 (Error Handling). However, when operating in the execution environment, it is not feasible to throw exceptions.
Thus, for operations designed for the execution environment, the status of an operation that can fail is returned as an
vtkm::ErrorCode, which is an enum.

enum class vtkm::ErrorCode
Identifies whether an operation was successful or what type of error it had.

Most errors in VTK-m are reported by throwing an exception. However, there are some places, most notably the
execution environment, where it is not possible to throw an exception. For those cases, it is typical for a function
to return an ErrorCode identifier. The calling code can check to see if the operation was a success or what kind
of error was encountered otherwise.

Use the vtkm::ErrorString() function to get a descriptive string of the error type.

Values:

enumerator Success
A successful operation.

This code is returned when the operation was successful. Calling code should check the error code against
this identifier when checking the status.

enumerator InvalidShapeId
A unknown shape identifier was encountered.

All cell shapes must be listed in vtkm::CellShapeIdEnum.

enumerator InvalidNumberOfPoints
The wrong number of points was provided for a given cell type.

For example, if a triangle has 4 points associated with it, you are likely to get this error.

enumerator InvalidCellMetric
A cell metric was requested for a cell that does not support that metric.

enumerator WrongShapeIdForTagType
This is an internal error from the lightweight cell library.

enumerator InvalidPointId
A bad point identifier was detected while operating on a cell.

306 Chapter 20. Advanced Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator InvalidEdgeId
A bad edge identifier was detected while operating on a cell.

enumerator InvalidFaceId
A bad face identifier was detected while operating on a cell.

enumerator SolutionDidNotConverge
An iterative operation did not find an appropriate solution.

This error code might be returned with some results of an iterative solution. However, solution did not
appear to resolve, so the results might not be accurate.

enumerator MatrixFactorizationFailed
A solution was not found for a linear system.

Some VTK-m computations use linear algebra to solve a system of equations. If the equations does not
give a valid result, this error can be returned.

enumerator DegenerateCellDetected
An operation detected a degenerate cell.

A degenerate cell has two or more vertices combined into one, which changes the structure of the cell. For
example, if 2 vertices of a tetrahedron are at the same point, the cell degenerates to a triangle. Degenerate
cells have the potential to interfere with some computations on cells.

enumerator MalformedCellDetected
An operation detected on a malformed cell.

Most cell shapes have some assumptions about their geometry (e.g. not self intersecting). If an operation de-
tects an expected behavior is violated, this error is returned. (Note that vtkm::DegenerateCellDetected
has its own error coe.)

enumerator OperationOnEmptyCell
An operation was attempted on a cell with an empty shape.

There is a special “empty” cell shape type (vtkm::CellShapeTagEmpty) that can be used as a placeholder
for a cell with no information. Math operations such as interpolation cannot be performed on empty cells,
and attempting to do so will result in this error.

enumerator CellNotFound
A cell matching some given criteria could not be found.

This error code is most often used in a cell locator where no cell in the given region could be found.

enumerator UnknownError

If a function or method returns an vtkm::ErrorCode, it is a good practice to check to make sure that the returned
value is vtkm::ErrorCode::Success. If it is not, you can use the vtkm::ErrorString() function to convert the
vtkm::ErrorCode to a descriptive C string. The easiest thing to do from within a worklet is to call the worklet’s
RaiseError method.

20.10. Error Codes 307

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline const char *vtkm::ErrorString(vtkm::ErrorCode code) noexcept
Convert a vtkm::ErrorCode into a human-readable string.

This method is useful when reporting the results of a function that failed.

Example 35: Checking an vtkm::ErrorCode and reporting errors in a
worklet.

1 vtkm::ErrorCode status = cellLocator.FindCell(point, cellId, parametric);
2 if (status != vtkm::ErrorCode::Success)
3 {
4 this->RaiseError(vtkm::ErrorString(status));
5 }

308 Chapter 20. Advanced Types

CHAPTER

TWENTYONE

LOGGING

VTK-m features a logging system that allows status updates and timing. VTK-m uses the loguru project to provide
runtime logging facilities. A sample of the log output can be found at https://gitlab.kitware.com/snippets/427.

21.1 Initializing Logging

Logging features are enabled by calling vtkm::cont::Initialize() as described in Chapter 6 (Initialization). Al-
though calling vtkm::cont::Initialize() is not strictly necessary for output messages, initialization adds the
following features.

• Set human-readable names for the log levels in the output.

• Allow the stderr logging level to be set at runtime by passing a --vtkm-log-level [level] argument to the
executable.

• Name the main thread.

• Print a preamble with details of the program’s startup (arguments, etc).

Example 1 in the following section provides an example of initializing with additional logging setup.

The logging implementation is thread-safe. When working in a multithreaded environment, each thread may be
assigned a human-readable name using vtkm::cont::SetLogThreadName() (which can later be retrieved with
vtkm::cont::GetLogThreadName()). This name will appear in the log output so that per-thread messages can
be easily tracked.

void vtkm::cont::SetLogThreadName(const std::string &name)
Specifies a humman-readable name to identify the current thread in the log output.

std::string vtkm::cont::GetLogThreadName()
Specifies a humman-readable name to identify the current thread in the log output.

21.2 Logging Levels

The logging in VTK-m provides several “levels” of logging. Logging levels are ordered by precedence. When se-
lecting which log message to output, a single logging level is provided. Any logging message with that or a higher
precedence is output. For example, if warning messages are on, then error messages are also outputted because errors
are a higher precedence than warnings. Likewise, if information messages are on, then error and warning messages are
also outputted.

Common Errors

309

https://gitlab.kitware.com/snippets/427

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

All logging levels are assigned a number, and logging levels with a higher precedence actually have a smaller number.

All logging levels are listed in the vtkm::cont::LogLevel enum.

enum class vtkm::cont::LogLevel
Log levels for use with the logging macros.

Values:

enumerator Off
A placeholder used to silence all logging.

Do not actually log to this level.

enumerator Fatal
Fatal errors that should abort execution.

enumerator Error
Important but non-fatal errors, such as device fail-over.

enumerator Warn
Less important user errors, such as out-of-bounds parameters.

enumerator Info
Information messages (detected hardware, etc) and temporary debugging output.

enumerator UserFirst
The first in a range of logging levels reserved for code that uses VTK-m.

Internal VTK-m code will not log on these levels but will report these logs.

enumerator UserLast
The last in a range of logging levels reserved for code that uses VTK-m.

enumerator DevicesEnabled
Information about which devices are enabled/disabled.

enumerator Perf
General timing data and algorithm flow information, such as filter execution, worklet dispatches, and device
algorithm calls.

enumerator MemCont
Host-side resource allocations/frees (e.g. ArrayHandle control buffers).

enumerator MemExec
Device-side resource allocations/frees (e.g ArrayHandle device buffers).

310 Chapter 21. Logging

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator MemTransfer
Transferring of data between a host and device.

enumerator KernelLaunches
Details on device-side kernel launches.

enumerator Cast
Reports when a dynamic object is (or is not) resolved via a CastAndCall or other casting method.

enumerator UserVerboseFirst
The first in a range of logging levels reserved for code that uses VTK-m.

Internal VTK-m code will not log on these levels but will report these logs. These are used similarly to
those in the UserFirst range but are at a lower precedence that also includes more verbose reporting from
VTK-m.

enumerator UserVerboseLast
The last in a range of logging levels reserved for code that uses VTK-m.

When VTK-m outputs an entry in its log, it annotates the message with the logging level. VTK-m will automati-
cally provide descriptions for all log levels described in vtkm::cont::LogLevel. A custom log level can be de-
scribed by calling the vtkm::cont::SetLogLevelName() function. (The log name can likewise be retrieved with
vtkm::cont::GetLogLevelName().)

void vtkm::cont::SetLogLevelName(vtkm::cont::LogLevel level, const std::string &name)
Register a custom name to identify a log level.

The name will be truncated to 4 characters internally.

Must not be called after InitLogging. Such calls will fail and log an error.

There is no need to call this for the default vtkm::cont::LogLevels. They are populated in InitLogging and will
be overwritten.

std::string vtkm::cont::GetLogLevelName(vtkm::cont::LogLevel level)
Get a human readable name for the log level.

If a name has not been registered via InitLogging or SetLogLevelName, the returned string just contains the
integer representation of the level.

Common Errors

The vtkm::cont::SetLogLevelName() function must be called before vtkm::cont::Initialize() to have an
effect.

Common Errors

The descriptions for each log level are only set up if vtkm::cont::Initialize() is called. If it is not, then all log
levels will be represented with a numerical value.

If vtkm::cont::Initialize() is called with argc/argv, then the user can control the logging level with the
--vtkm-log-level command line argument. Alternatively, you can control which logging levels are reported with
the vtkm::cont::SetStderrLogLevel().

21.2. Logging Levels 311

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

void vtkm::cont::SetStderrLogLevel(vtkm::cont::LogLevel level)
Set the range of log levels that will be printed to stderr.

All levels with an enum value less-than-or-equal-to level will be printed.

void vtkm::cont::SetStderrLogLevel(const char *verbosity)
Set the range of log levels that will be printed to stderr.

All levels with an enum value less-than-or-equal-to level will be printed.

vtkm::cont::LogLevel vtkm::cont::GetStderrLogLevel()
Get the active highest log level that will be printed to stderr.

Example 1: Initializing logging.

1 static const vtkm::cont::LogLevel CustomLogLevel = vtkm::cont::LogLevel::UserFirst;
2

3 int main(int argc, char** argv)
4 {
5 vtkm::cont::SetLogLevelName(CustomLogLevel, "custom");
6

7 // For this example we will set the log level manually.
8 // The user can override this with the --vtkm-log-level command line flag.
9 vtkm::cont::SetStderrLogLevel(CustomLogLevel);

10

11 vtkm::cont::Initialize(argc, argv);
12

13 // Do interesting stuff...

21.3 Log Entries

Log entries are created with a collection of macros provided in vtkm/cont/Logging.h. In addition to basic log
entries, VTK-m logging can also provide conditional logging and scope levels of logs.

21.3.1 Basic Log Entries

The main logging entry points are the macros VTKM_LOG_S and VTKM_LOG_F, which use C++ stream and printf syntax,
respectively. Both macros take a logging level as the first argument. The remaining arguments specify the message
printed to the log. VTKM_LOG_S takes a single argument with a C++ stream expression (so << operators can exist in the
expression). VTKM_LOG_F takes a C string as its second argument that has printf-style formatting codes. The remaining
arguments fulfill those codes.

VTKM_LOG_S(level, ...)
Writes a message using stream syntax to the indicated log level.

The ellipsis may be replaced with the log message as if constructing a C++ stream, e.g:

VTKM_LOG_S(vtkm::cont::LogLevel::Perf,
"Executed functor " << vtkm::cont::TypeToString(functor)
<< " on device " << deviceId.GetName());

312 Chapter 21. Logging

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

VTKM_LOG_F(level, ...)
Writes a message using printf syntax to the indicated log level.

The ellipsis may be replaced with the log message as if constructing a printf call, e.g:

VTKM_LOG_F(vtkm::cont::LogLevel::Perf,
"Executed functor %s on device %s",
vtkm::cont::TypeToString(functor).c_str(),
deviceId.GetName().c_str());

Example 2: Basic logging.

1 VTKM_LOG_F(vtkm::cont::LogLevel::Info,
2 "Base VTK-m version: %d.%d",
3 VTKM_VERSION_MAJOR,
4 VTKM_VERSION_MINOR);
5 VTKM_LOG_S(vtkm::cont::LogLevel::Info, "Full VTK-m version: " << VTKM_VERSION_FULL);

21.3.2 Conditional Log Entries

The macros VTKM_LOG_IF_S VTKM_LOG_IF_F behave similarly to VTKM_LOG_S and VTKM_LOG_F, respectively, except
they have an extra argument that contains the condition. If the condition is true, then the log entry is created. If the
condition is false, then the statement is ignored and nothing is recorded in the log.

VTKM_LOG_IF_S(level, cond, ...)
Same as VTKM_LOG_S, but only logs if cond is true.

VTKM_LOG_IF_F(level, cond, ...)
Same as VTKM_LOG_F, but only logs if cond is true.

Example 3: Conditional logging.

1 for (vtkm::Id i = 0; i < 5; i++)
2 {
3 VTKM_LOG_IF_S(vtkm::cont::LogLevel::Info, i % 2 == 0, "Found an even number: " << i);
4 }

21.3.3 Scoped Log Entries

The logging back end supports the concept of scopes. Scopes allow the nesting of log messages, which allows a complex
operation to report when it starts, when it ends, and what log messages happen in the middle. Scoped log entries are
also timed so you can get an idea of how long operations take. Scoping can happen to arbitrary depths.

Common Errors

Although the timing reported in scoped log entries can give an idea of the time each operation takes, the reported time
should not be considered accurate in regards to timing parallel operations. If a parallel algorithm is invoked inside a
log scope, the program may return from that scope before the parallel algorithm is complete. See Chapter 14 (Timers)
for information on more accurate timers.

21.3. Log Entries 313

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Scoped log entries follow the same scoping of your C++ code. A scoped log can be created with the VTKM_LOG_SCOPE
macro. This macro behaves similarly to VTKM_LOG_F except that it creates a scoped log that starts when
VTKM_LOG_SCOPE and ends when the program leaves the given scope.

VTKM_LOG_SCOPE(level, ...)
Creates a new scope at the requested level.

The log scope ends when the code scope ends. The ellipses form the scope name using printf syntax.

{
VTKM_LOG_SCOPE(vtkm::cont::LogLevel::Perf,

"Executing filter %s",
vtkm::cont::TypeToString(myFilter).c_str());

myFilter.Execute();
}

Example 4: Scoped logging.

1 for (vtkm::IdComponent trial = 0; trial < numTrials; ++trial)
2 {
3 VTKM_LOG_SCOPE(CustomLogLevel, "Trial %d", trial);
4

5 VTKM_LOG_F(CustomLogLevel, "Do thing 1");
6

7 VTKM_LOG_F(CustomLogLevel, "Do thing 2");
8

9 //...
10 }

It is also common, and typically good code structure, to structure scoped concepts around functions or meth-
ods. Thus, VTK-m provides VTKM_LOG_SCOPE_FUNCTION. When placed at the beginning of a function or macro,
VTKM_LOG_SCOPE_FUNCTION will automatically create a scoped log around it.

VTKM_LOG_SCOPE_FUNCTION(level)
Equivalent to VTKM_LOG_SCOPE(level, __func__)

Example 5: Scoped logging in a function.

1 void TestFunc()
2 {
3 VTKM_LOG_SCOPE_FUNCTION(vtkm::cont::LogLevel::Info);
4 VTKM_LOG_S(vtkm::cont::LogLevel::Info, "Showcasing function logging");
5 }

21.4 Helper Functions

The vtkm/cont/Logging.h header file also contains several helper functions that provide useful functions when
reporting information about the system.

Did You Know?

Although provided with the logging utilities, these functions can be useful in contexts outside of the logging as well.

314 Chapter 21. Logging

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

These functions are available even if VTK-m is compiled with logging off.

The vtkm::cont::TypeToString() function provides run-time type information (RTTI) based type-name infor-
mation. vtkm::cont::TypeToString() is a templated function for which you have to explicitly declare the type.
vtkm::cont::TypeToString() returns a std::string containing a representation of the type provided. When log-
ging is enabled, vtkm::cont::TypeToString() uses the logging back end to demangle symbol names on supported
platforms.

template<typename T>
inline std::string vtkm::cont::TypeToString()

Use RTTI information to retrieve the name of the type T.

If logging is enabled and the platform supports it, the type name will also be demangled.

template<typename T>
inline std::string vtkm::cont::TypeToString(const T&)

Use RTTI information to retrieve the name of the type T.

If logging is enabled and the platform supports it, the type name will also be demangled.

std::string vtkm::cont::TypeToString(const std::type_index &t)
Use RTTI information to retrieve the name of the type T.

If logging is enabled and the platform supports it, the type name will also be demangled.

std::string vtkm::cont::TypeToString(const std::type_info &t)
Use RTTI information to retrieve the name of the type T.

If logging is enabled and the platform supports it, the type name will also be demangled.

The vtkm::cont::GetHumanReadableSize() function takes a size of memory in bytes and returns a human read-
able string (for example “64 bytes”, “1.44 MiB”, “128 GiB”, etc). vtkm::cont::GetSizeString() is a sim-
ilar function that returns the same thing as vtkm::cont::GetHumanReadableSize() followed by (# bytes)
(with # replaced with the number passed to the function). Both vtkm::cont::GetHumanReadableSize() and
vtkm::cont::GetSizeString() take an optional second argument that is the number of digits of precision to dis-
play. By default, they display 2 digits of precision.

std::string vtkm::cont::GetHumanReadableSize(vtkm::UInt64 bytes, int prec = 2)
Convert a size in bytes to a human readable string (such as “64 bytes”, “1.44 MiB”, “128 GiB”, etc).

prec controls the fixed point precision of the stringified number.

std::string vtkm::cont::GetSizeString(vtkm::UInt64 bytes, int prec = 2)
Returns “%1 (%2 bytes)” where %1 is the result from GetHumanReadableSize and %2 is the exact number of
bytes.

The vtkm::cont::GetStackTrace() function returns a string containing a trace of the stack, which can be helpful
for debugging. vtkm::cont::GetStackTrace() takes an optional argument for the number of stack frames to skip.
Reporting the stack trace is not available on all platforms. On platforms that are not supported, a simple string reporting
that the stack trace is unavailable is returned.

std::string vtkm::cont::GetStackTrace(vtkm::Int32 skip = 0)
Returns a stacktrace on supported platforms.

Argument is the number of frames to skip (GetStackTrace and below are already skipped).

21.4. Helper Functions 315

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 6: Helper functions provided for logging.

1 template<typename T>
2 void DoSomething(T&& x)
3 {
4 VTKM_LOG_S(CustomLogLevel,
5 "Doing something with type " << vtkm::cont::TypeToString<T>());
6

7 vtkm::Id arraySize = 100000 * sizeof(T);
8 VTKM_LOG_S(CustomLogLevel,
9 "Size of array is " << vtkm::cont::GetHumanReadableSize(arraySize));

10 VTKM_LOG_S(CustomLogLevel,
11 "More precisely it is " << vtkm::cont::GetSizeString(arraySize, 4));
12

13 VTKM_LOG_S(CustomLogLevel, "Stack location: " << vtkm::cont::GetStackTrace());

316 Chapter 21. Logging

CHAPTER

TWENTYTWO

WORKLET TYPES

Chapter 18 (Simple Worklets) introduces worklets and provides a simple example of creating a worklet to run an
algorithm on a many core device. Different operations in visualization can have different data access patterns, perform
different execution flow, and require different provisions. VTK-m manages these different accesses, execution, and
provisions by grouping visualization algorithms into common classes of operation and supporting each class with its
own worklet type.

Each worklet type has a generic superclass that worklets of that particular type must inherit. This makes the type of
the worklet easy to identify. The following list describes each worklet type provided by VTK-m and the superclass that
supports it.

• Field Map A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that
applies a function (the operator in the worklet) on all the field values at a single point or cell and creates a
new field value at that same location. Although the intention is to operate on some variable over a mesh, a
vtkm::worklet::WorkletMapField may actually be applied to any array. Thus, a field map can be used as a
basic map operation.

• Topology Map A worklet deriving vtkm::worklet::WorkletMapTopology or one of its child classes per-
forms a mapping operation that applies a function (the operator in the worklet) on all elements of a particular
type (such as points or cells) and creates a new field for those elements. The basic operation is similar to a field
map except that in addition to access fields being mapped on, the worklet operation also has access to incident
fields.

There are multiple convenience classes available for the most common types of topology mapping.
vtkm::worklet::WorkletVisitCellsWithPoints calls the worklet operation for each cell and makes ev-
ery incident point available. This type of map also has access to cell structures and can interpolate point fields.
Likewise, vtkm::worklet::WorkletVisitPointsWithCells calls the worklet operation for each point and
makes every incident cell available.

• Point Neighborhood A worklet deriving from vtkm::worklet::WorkletPointNeighborhood performs a
mapping operation that applies a function (the operator in the worklet) on all points of a structured mesh. The
basic operation is similar to a field map except that in addition to having access to the point being operated on,
you can get the field values of nearby points within a neighborhood of a given size. Point neighborhood worklets
can only applied to structured cell sets.

• Reduce by Key A worklet deriving :class:vtkm::worklet::WorkletReduceByKey` operates on an array of keys and
one or more associated arrays of values. When a reduce by key worklet is invoked, all identical keys are collected
and the worklet is called once for each unique key. Each worklet invocation is given a Vec-like containing all
values associated with the unique key. Reduce by key worklets are very useful for combining like items such as
shared topology elements or coincident points.

The remainder of this chapter provides details on how to create worklets of each type.

317

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

22.1 Field Map

A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that applies a function
(the operator in the worklet) on all the field values at a single point or cell and creates a new field value at that same
location. Although the intention is to operate on some variable over the mesh, a vtkm::worklet::WorkletMapField
can actually be applied to any array.

class WorkletMapField : public vtkm::worklet::internal::WorkletBase
Base class for worklets that do a simple mapping of field arrays.

All inputs and outputs are on the same domain. That is, all the arrays are the same size.

Subclassed by vtkm::rendering::Triangulator::IndicesSort, vtkm::rendering::Triangulator::InterleaveArrays12,
vtkm::rendering::Triangulator::InterleaveArrays2, vtkm::rendering::Triangulator::UniqueTriangles,
vtkm::worklet::FieldStatistics< FieldType >::CalculatePowers, vtkm::worklet::FieldStatistics<
FieldType >::SubtractConst, vtkm::worklet::KernelSplatterFilterUniformGrid< Kernel, De-
viceAdapter >::ComputeLocalNeighborId, vtkm::worklet::KernelSplatterFilterUniformGrid< Ker-
nel, DeviceAdapter >::GetFootprint, vtkm::worklet::KernelSplatterFilterUniformGrid< Ker-
nel, DeviceAdapter >::GetSplatValue, vtkm::worklet::KernelSplatterFilterUniformGrid< Ker-
nel, DeviceAdapter >::UpdateVoxelSplats, vtkm::worklet::KernelSplatterFilterUniformGrid<
Kernel, DeviceAdapter >::zero_voxel, vtkm::worklet::Normal, vtkm::worklet::Normalize,
vtkm::worklet::TriangleWinding::WorkletWindToCellNormals, vtkm::worklet::streamline::MakeStreamLines<
FieldType >

A field map worklet supports the following tags in the parameters of its ControlSignature.

struct FieldIn : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletMapField.h> A control signature tag for input fields.

A FieldIn argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke. Each
invocation of the worklet gets a single value out of this array.

This tag means that the field is read only.

The worklet’s InputDomain can be set to a FieldIn argument. In this case, the input domain will be the size
of the array.

struct FieldOut : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletMapField.h> A control signature tag for output fields.

A FieldOut argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke. The
array is resized before scheduling begins, and each invocation of the worklet sets a single value in the array.

This tag means that the field is write only.

Although uncommon, it is possible to set the worklet’s InputDomain to a FieldOut argument. If this is the
case, then the vtkm::cont::ArrayHandle passed as the argument must be allocated before being passed to
the invoke, and the input domain will be the size of the array.

struct FieldInOut : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletMapField.h> A control signature tag for input-output (in-place) fields.

A FieldInOut argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke.
Each invocation of the worklet gets a single value out of this array, which is replaced by the resulting value after
the worklet completes.

This tag means that the field is read and write.

318 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The worklet’s InputDomain can be set to a FieldInOut argument. In this case, the input domain will be the
size of the array.

struct WholeArrayIn : public vtkm::worklet::internal::WorkletBase::WholeArrayIn
#include <WorkletMapField.h> ControlSignature tag for whole input arrays.

The WholeArrayIn control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from any place in the array is given to the worklet.

struct WholeArrayOut : public vtkm::worklet::internal::WorkletBase::WholeArrayOut
#include <WorkletMapField.h> ControlSignature tag for whole output arrays.

The WholeArrayOut control signature tag specifies an vtkm::cont::ArrayHandle passed to the invoke of
the worklet. An array portal capable of writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible.

struct WholeArrayInOut : public vtkm::worklet::internal::WorkletBase::WholeArrayInOut
#include <WorkletMapField.h> ControlSignature tag for whole input/output arrays.

The WholeArrayOut control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.

struct AtomicArrayInOut : public vtkm::worklet::internal::WorkletBase::AtomicArrayInOut
#include <WorkletMapField.h> ControlSignature tag for whole input/output arrays.

The AtomicArrayInOut control signature tag specifies vtkm::cont::ArrayHandle passed to the invoke of
the worklet. A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in
the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of
a parallel algorithm.

template<typename VisitTopology = Cell, typename IncidentTopology = Point>

struct WholeCellSetIn : public vtkm::worklet::internal::WorkletBase::WholeCellSetIn<Cell, Point>
#include <WorkletMapField.h> ControlSignature tag for whole input topology.

The WholeCellSetIn control signature tag specifies a vtkm::cont::CellSet passed to the invoke of the
worklet. A connectivity object capable of finding elements of one type that are incident on elements of a different
type. This can be used to global lookup for arbitrary topology information

struct ExecObject : public vtkm::worklet::internal::WorkletBase::ExecObject
#include <WorkletMapField.h> ControlSignature tag for execution object inputs.

This tag represents an execution object that is passed directly from the control environment to the worklet.
A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses of
vtkm::exec::ExecutionObjectBase behave like a factory for objects that work on particular devices. They
do this by implementing a PrepareForExecution() method that takes a device adapter tag and returns an
object that works on that device. That device-specific object is passed directly to the worklet.

Furthermore, a field map worklet supports the following tags in the parameters of its ExecutionSignature.

struct _1 : public vtkm::placeholders::Arg<1>
#include <WorkletMapField.h> Argument placeholders for an ExecutionSignature.

All worklet superclasses declare numeric tags in the form of _1, _2, _3 etc. that are used in the
ExecutionSignature to refer to the corresponding parameter in the ControlSignature.

22.1. Field Map 319

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct WorkIndex : public vtkm::exec::arg::WorkIndex
#include <WorkletMapField.h> The ExecutionSignature tag to use to get the work index.

This tag produces a vtkm::Id that uniquely identifies the invocation instance of the worklet. When a worklet is
dispatched, it broken into pieces defined by the input domain and scheduled on independent threads. This tag in
the ExecutionSignature passes the index for this work.

struct VisitIndex : public vtkm::exec::arg::VisitIndex
#include <WorkletMapField.h> The ExecutionSignature tag to use to get the visit index.

This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations operate on
the same input item, which can happen when defining a worklet with scatter.

When a worklet is dispatched, there is a scatter operation defined that optionally allows each input to go to
multiple output entries. When one input is assigned to multiple outputs, there needs to be a mechanism to
uniquely identify which output is which. The visit index is a value between 0 and the number of outputs a
particular input goes to. This tag in the ExecutionSignature passes the visit index for this work.

struct InputIndex : public vtkm::exec::arg::InputIndex
#include <WorkletMapField.h> The ExecutionSignature tag to use to get the input index.

This tag produces a vtkm::Id that identifies the index of the input element, which can differ from the WorkIndex
in a worklet with a scatter.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the input element that the work thread is
currently working on. When a worklet has a scatter associated with it, the input and output indices can be
different.

struct OutputIndex : public vtkm::exec::arg::OutputIndex
#include <WorkletMapField.h> The ExecutionSignature tag to use to get the output index.

This tag produces a vtkm::Id that identifies the index of the output element. (This is generally the same as
WorkIndex.)

When a worklet is dispatched, it broken into pieces defined by the output domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the output element that the work thread is
currently working on. When a worklet has a scatter associated with it, the output and output indices can be
different.

struct ThreadIndices : public vtkm::exec::arg::ThreadIndices
#include <WorkletMapField.h> The ExecutionSignature tag to use to get the thread indices.

This tag produces an internal object that manages indices and other metadata of the current thread. Thread
indices objects vary by worklet type, but most users can get the information they need through other signature
tags.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. During this process multiple indices associated with the input and output can be generated. This tag in
the ExecutionSignature passes the index for this work.

struct Device : public vtkm::worklet::internal::WorkletBase::Device
#include <WorkletMapField.h> ExecutionSignature tag for getting the device adapter tag.

This tag passes a device adapter tag object. This allows the worklet function to template on or overload itself
based on the type of device that it is being executed on.

320 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Field maps most commonly perform basic calculator arithmetic, as demonstrated in the following example.

Example 1: Implementation and use of a field map worklet.

1 class ComputeMagnitude : public vtkm::worklet::WorkletMapField
2 {
3 public:
4 using ControlSignature = void(FieldIn inputVectors, FieldOut outputMagnitudes);
5 using ExecutionSignature = _2(_1);
6

7 using InputDomain = _1;
8

9 template<typename T, vtkm::IdComponent Size>
10 VTKM_EXEC T operator()(const vtkm::Vec<T, Size>& inVector) const
11 {
12 return vtkm::Magnitude(inVector);
13 }
14 };

Although simple, the vtkm::worklet::WorkletMapField worklet type can be used (and abused) as a general
parallel-for/scheduling mechanism. In particular, the WorkIndex execution signature tag can be used to get a unique
index, the WholeArray* tags can be used to get random access to arrays, and the ExecObject control signature tag
can be used to pass execution objects directly to the worklet. Whole arrays and execution objects are talked about in
more detail in Chapters ref{chap:Globals} and ref{chap:ExecutionObjects}, respectively, in more detail, but here is a
simple example that uses the random access of :class`WholeArrayOut` to make a worklet that copies an array in reverse
order.

Example 2: Leveraging field maps and field maps for general processing.

1 namespace vtkm
2 {
3 namespace worklet
4 {
5

6 struct ReverseArrayCopyWorklet : vtkm::worklet::WorkletMapField
7 {
8 using ControlSignature = void(FieldIn inputArray, WholeArrayOut outputArray);
9 using ExecutionSignature = void(_1, _2, WorkIndex);

10 using InputDomain = _1;
11

12 template<typename InputType, typename OutputArrayPortalType>
13 VTKM_EXEC void operator()(const InputType& inputValue,
14 const OutputArrayPortalType& outputArrayPortal,
15 vtkm::Id workIndex) const
16 {
17 vtkm::Id outIndex = outputArrayPortal.GetNumberOfValues() - workIndex - 1;
18 if (outIndex >= 0)
19 {
20 outputArrayPortal.Set(outIndex, inputValue);
21 }
22 else
23 {
24 this->RaiseError("Output array not sized correctly.");
25 }

(continues on next page)

22.1. Field Map 321

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

26 }
27 };
28

29 } // namespace worklet
30 } // namespace vtkm

22.2 Topology Map

A topology map performs a mapping that it applies a function (the operator in the worklet) on all the elements of
a vtkm::cont::DataSet of a particular type (i.e. point, edge, face, or cell). While operating on the element, the
worklet has access to data from all incident elements of another type.

There are several versions of topology maps that differ in what type of element being mapped from and what type of
element being mapped to. The subsequent sections describe these different variations of the topology maps.

22.2.1 Visit Cells with Points

A worklet deriving vtkm::worklet::WorkletVisitCellsWithPoints performs a mapping operation that applies
a function (the operator in the worklet) on all the cells of a vtkm::cont::DataSet. While operating on the cell, the
worklet has access to fields associated both with the cell and with all incident points. Additionally, the worklet can get
information about the structure of the cell and can perform operations like interpolation on it.

class WorkletVisitCellsWithPoints : public
vtkm::worklet::WorkletMapTopology<vtkm::TopologyElementTagCell, vtkm::TopologyElementTagPoint>

Base class for worklets that map from Points to Cells.

Subclassed by vtkm::cont::internal::RConnTableHelpers::WriteConnectivity,
vtkm::cont::internal::RConnTableHelpers::WriteNumIndices, vtkm::rendering::Cylinderizer::CountSegments,
vtkm::rendering::Cylinderizer::Cylinderize, vtkm::rendering::Cylinderizer::SegmentedStructured<
DIM >, vtkm::rendering::Quadralizer::CountQuads, vtkm::rendering::Quadralizer::Quadralize,
vtkm::rendering::Quadralizer::SegmentedStructured< DIM >, vtkm::rendering::Triangulator::CountTriangles,
vtkm::rendering::Triangulator::Triangulate, vtkm::rendering::Triangulator::TriangulateStructured< DIM
>, vtkm::worklet::CellDeepCopy::CountCellPoints, vtkm::worklet::CellDeepCopy::PassCellStructure,
vtkm::worklet::TriangleWinding::WorkletGetCellShapesAndSizes, vtkm::worklet::TriangleWinding::WorkletWindToCellNormalsGeneric

A visit cells with points worklet supports the following tags in the parameters of its ControlSignature.

struct CellSetIn : public vtkm::worklet::WorkletMapTopology<VisitTopology, IncidentTopology>::CellSetIn
#include <WorkletMapTopology.h> A control signature tag for input connectivity.

The associated parameter of the invoke should be a subclass of vtkm::cont::CellSet.

There should be exactly one CellSetIn argument in the ControlSignature, and the InputDomainmust point
to it.

struct FieldInCell : public vtkm::worklet::WorkletVisitCellsWithPoints::FieldInVisit
#include <WorkletMapTopology.h> A control signature tag for input fields on the cells of the topology.

The associated parameter of the invoke should be a vtkm::cont::ArrayHandle that has the same number of
values as the cells of the provided CellSet. The worklet gets a single value that is the field at that cell.

322 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct FieldInPoint : public vtkm::worklet::WorkletVisitCellsWithPoints::FieldInIncident
#include <WorkletMapTopology.h> A control signature tag for input fields on the points of the topology.

The associated parameter of the invoke should be a vtkm::cont::ArrayHandle that has the same number of
values as the points of the provided CellSet. The worklet gets a Vec-like object containing the field values on
all incident points.

struct FieldInVisit : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::FieldInVisit

#include <WorkletMapTopology.h> A control signature tag for input fields from the visited topology.

For WorkletVisitCellsWithPoints, this is the same as FieldInCell.

Subclassed by vtkm::worklet::WorkletVisitCellsWithPoints::FieldInCell

struct FieldInIncident : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::FieldInIncident

#include <WorkletMapTopology.h> A control signature tag for input fields from the incident topology.

For WorkletVisitCellsWithPoints, this is the same as FieldInPoint.

Subclassed by vtkm::worklet::WorkletVisitCellsWithPoints::FieldInPoint

struct FieldOutCell : public vtkm::worklet::WorkletVisitCellsWithPoints::FieldOut
#include <WorkletMapTopology.h> A control signature tag for output fields.

A WorkletVisitCellsWithPoints always has the output on the cells of the topology. The associated param-
eter of the invoke should be a vtkm::cont::ArrayHandle, and it will be resized to the number of cells in the
provided CellSet.

struct FieldOut : public vtkm::worklet::WorkletMapTopology<VisitTopology, IncidentTopology>::FieldOut
#include <WorkletMapTopology.h> A control signature tag for output fields.

A WorkletVisitCellsWithPoints always has the output on the cells of the topology. The associated param-
eter of the invoke should be a vtkm::cont::ArrayHandle, and it will be resized to the number of cells in the
provided CellSet.

Subclassed by vtkm::worklet::WorkletVisitCellsWithPoints::FieldOutCell

struct FieldInOutCell : public vtkm::worklet::WorkletVisitCellsWithPoints::FieldInOut
#include <WorkletMapTopology.h> A control signature tag for input-output (in-place) fields.

A WorkletVisitCellsWithPoints always has the output on the cells of the topology. The associated param-
eter of the invoke should be a vtkm::cont::ArrayHandle, and it must have the same number of values as the
number of cells of the topology.

struct FieldInOut : public vtkm::worklet::WorkletMapTopology<VisitTopology, IncidentTopology>::FieldInOut
#include <WorkletMapTopology.h> A control signature tag for input-output (in-place) fields.

A WorkletVisitCellsWithPoints always has the output on the cells of the topology. The associated param-
eter of the invoke should be a vtkm::cont::ArrayHandle, and it must have the same number of values as the
number of cells of the topology.

Subclassed by vtkm::worklet::WorkletVisitCellsWithPoints::FieldInOutCell

22.2. Topology Map 323

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct WholeArrayIn : public vtkm::worklet::internal::WorkletBase::WholeArrayIn
#include <WorkletMapTopology.h> ControlSignature tag for whole input arrays.

The WholeArrayIn control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from any place in the array is given to the worklet.

struct WholeArrayOut : public vtkm::worklet::internal::WorkletBase::WholeArrayOut
#include <WorkletMapTopology.h> ControlSignature tag for whole output arrays.

The WholeArrayOut control signature tag specifies an vtkm::cont::ArrayHandle passed to the invoke of
the worklet. An array portal capable of writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible.

struct WholeArrayInOut : public vtkm::worklet::internal::WorkletBase::WholeArrayInOut
#include <WorkletMapTopology.h> ControlSignature tag for whole input/output arrays.

The WholeArrayOut control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.

struct AtomicArrayInOut : public vtkm::worklet::internal::WorkletBase::AtomicArrayInOut
#include <WorkletMapTopology.h> ControlSignature tag for whole input/output arrays.

The AtomicArrayInOut control signature tag specifies vtkm::cont::ArrayHandle passed to the invoke of
the worklet. A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in
the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of
a parallel algorithm.

template<typename VisitTopology = Cell, typename IncidentTopology = Point>

struct WholeCellSetIn : public vtkm::worklet::internal::WorkletBase::WholeCellSetIn<Cell, Point>
#include <WorkletMapTopology.h> ControlSignature tag for whole input topology.

The WholeCellSetIn control signature tag specifies a vtkm::cont::CellSet passed to the invoke of the
worklet. A connectivity object capable of finding elements of one type that are incident on elements of a different
type. This can be used to global lookup for arbitrary topology information

struct ExecObject : public vtkm::worklet::internal::WorkletBase::ExecObject
#include <WorkletMapTopology.h> ControlSignature tag for execution object inputs.

This tag represents an execution object that is passed directly from the control environment to the worklet.
A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses of
vtkm::exec::ExecutionObjectBase behave like a factory for objects that work on particular devices. They
do this by implementing a PrepareForExecution() method that takes a device adapter tag and returns an
object that works on that device. That device-specific object is passed directly to the worklet.

A visit cells with points worklet supports the following tags in the parameters of its ExecutionSignature.

struct _1 : public vtkm::placeholders::Arg<1>
#include <WorkletMapTopology.h> Argument placeholders for an ExecutionSignature.

All worklet superclasses declare numeric tags in the form of _1, _2, _3 etc. that are used in the
ExecutionSignature to refer to the corresponding parameter in the ControlSignature.

324 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct CellShape : public vtkm::worklet::WorkletMapTopology<VisitTopology, IncidentTopology>::CellShape
#include <WorkletMapTopology.h> An execution signature tag to get the shape of the visited cell.

This tag causes a vtkm::UInt8 to be passed to the worklet containing containing an id for the shape of the cell
being visited.

struct PointCount : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::IncidentElementCount

#include <WorkletMapTopology.h> An execution signature tag to get the number of incident points.

Each cell in a vtkm::cont::CellSet can be incident on a number of points. This tag causes a
vtkm::IdComponent to be passed to the worklet containing the number of incident points.

struct PointIndices : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::IncidentElementIndices

#include <WorkletMapTopology.h> An execution signature tag to get the indices of the incident points.

The indices will be provided in a Vec-like object containing vtkm::Id indices for the cells in the data set.

struct WorkIndex : public vtkm::exec::arg::WorkIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the work index.

This tag produces a vtkm::Id that uniquely identifies the invocation instance of the worklet. When a worklet is
dispatched, it broken into pieces defined by the input domain and scheduled on independent threads. This tag in
the ExecutionSignature passes the index for this work.

struct VisitIndex : public vtkm::exec::arg::VisitIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the visit index.

This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations operate on
the same input item, which can happen when defining a worklet with scatter.

When a worklet is dispatched, there is a scatter operation defined that optionally allows each input to go to
multiple output entries. When one input is assigned to multiple outputs, there needs to be a mechanism to
uniquely identify which output is which. The visit index is a value between 0 and the number of outputs a
particular input goes to. This tag in the ExecutionSignature passes the visit index for this work.

struct InputIndex : public vtkm::exec::arg::InputIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the input index.

This tag produces a vtkm::Id that identifies the index of the input element, which can differ from the WorkIndex
in a worklet with a scatter.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the input element that the work thread is
currently working on. When a worklet has a scatter associated with it, the input and output indices can be
different.

struct OutputIndex : public vtkm::exec::arg::OutputIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the output index.

This tag produces a vtkm::Id that identifies the index of the output element. (This is generally the same as
WorkIndex.)

22.2. Topology Map 325

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

When a worklet is dispatched, it broken into pieces defined by the output domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the output element that the work thread is
currently working on. When a worklet has a scatter associated with it, the output and output indices can be
different.

struct ThreadIndices : public vtkm::exec::arg::ThreadIndices
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the thread indices.

This tag produces an internal object that manages indices and other metadata of the current thread. Thread
indices objects vary by worklet type, but most users can get the information they need through other signature
tags.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. During this process multiple indices associated with the input and output can be generated. This tag in
the ExecutionSignature passes the index for this work.

struct Device : public vtkm::worklet::internal::WorkletBase::Device
#include <WorkletMapTopology.h> ExecutionSignature tag for getting the device adapter tag.

This tag passes a device adapter tag object. This allows the worklet function to template on or overload itself
based on the type of device that it is being executed on.

Point to cell field maps are a powerful construct that allow you to interpolate point fields throughout the space of the
data set. See Chapter 26 (Working with Cells) for a description on how to work with the cell information provided to
the worklet. The following example provides a simple demonstration that finds the geometric center of each cell by
interpolating the point coordinates to the cell centers.

Example 3: Implementation and use of a visit cells with points worklet.

1 namespace vtkm
2 {
3 namespace worklet
4 {
5

6 struct CellCenter : public vtkm::worklet::WorkletVisitCellsWithPoints
7 {
8 public:
9 using ControlSignature = void(CellSetIn cellSet,

10 FieldInPoint inputPointField,
11 FieldOut outputCellField);
12 using ExecutionSignature = void(_1, PointCount, _2, _3);
13

14 using InputDomain = _1;
15

16 template<typename CellShape, typename InputPointFieldType, typename OutputType>
17 VTKM_EXEC void operator()(CellShape shape,
18 vtkm::IdComponent numPoints,
19 const InputPointFieldType& inputPointField,
20 OutputType& centerOut) const
21 {
22 vtkm::Vec3f parametricCenter;
23 vtkm::exec::ParametricCoordinatesCenter(numPoints, shape, parametricCenter);
24 vtkm::exec::CellInterpolate(inputPointField, parametricCenter, shape, centerOut);
25 }
26 };

(continues on next page)

326 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

27

28 } // namespace worklet
29 } // namespace vtkm

22.2.2 Visit Points with Cells

A worklet deriving vtkm::worklet::WorkletVisitPointsWithCells performs a mapping operation that applies
a function (the operator in the worklet) on all the points of a vtkm::cont::DataSet. While operating on the point,
the worklet has access to fields associated both with the point and with all incident cells.

class WorkletVisitPointsWithCells : public
vtkm::worklet::WorkletMapTopology<vtkm::TopologyElementTagPoint, vtkm::TopologyElementTagCell>

Base class for worklets that map from Cells to Points.

A visit points with cells worklet supports the following tags in the parameters of its ControlSignature.

struct CellSetIn : public vtkm::worklet::WorkletMapTopology<VisitTopology, IncidentTopology>::CellSetIn
#include <WorkletMapTopology.h> A control signature tag for input connectivity.

The associated parameter of the invoke should be a subclass of vtkm::cont::CellSet.

There should be exactly one CellSetIn argument in the ControlSignature, and the InputDomainmust point
to it.

struct FieldInPoint : public vtkm::worklet::WorkletVisitPointsWithCells::FieldInVisit
#include <WorkletMapTopology.h> A control signature tag for input fields on the points of the topology.

The associated parameter of the invoke should be a vtkm::cont::ArrayHandle that has the same number of
values as the points of the provided CellSet. The worklet gets a single value that is the field at that point.

struct FieldInCell : public vtkm::worklet::WorkletVisitPointsWithCells::FieldInIncident
#include <WorkletMapTopology.h> A control signature tag for input fields on the cells of the topology.

The associated parameter of the invoke should be a vtkm::cont::ArrayHandle that has the same number of
values as the cells of the provided CellSet. The worklet gets a Vec-like object containing the field values on all
incident cells.

struct FieldInVisit : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::FieldInVisit

#include <WorkletMapTopology.h> A control signature tag for input fields from the visited topology.

For WorkletVisitPointsWithCells, this is the same as FieldInPoint.

Subclassed by vtkm::worklet::WorkletVisitPointsWithCells::FieldInPoint

struct FieldInIncident : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::FieldInIncident

#include <WorkletMapTopology.h> A control signature tag for input fields from the incident topology.

For WorkletVisitPointsWithCells, this is the same as FieldInCell.

Subclassed by vtkm::worklet::WorkletVisitPointsWithCells::FieldInCell

22.2. Topology Map 327

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct FieldOutPoint : public vtkm::worklet::WorkletVisitPointsWithCells::FieldOut
#include <WorkletMapTopology.h> A control signature tag for output fields.

A WorkletVisitPointsWithCells always has the output on the points of the topology. The associated pa-
rameter of the invoke should be a vtkm::cont::ArrayHandle, and it will be resized to the number of points
in the provided CellSet.

struct FieldOut : public vtkm::worklet::WorkletMapTopology<VisitTopology, IncidentTopology>::FieldOut
#include <WorkletMapTopology.h> A control signature tag for output fields.

A WorkletVisitPointsWithCells always has the output on the points of the topology. The associated pa-
rameter of the invoke should be a vtkm::cont::ArrayHandle, and it will be resized to the number of points
in the provided CellSet.

Subclassed by vtkm::worklet::WorkletVisitPointsWithCells::FieldOutPoint

struct FieldInOutPoint : public vtkm::worklet::WorkletVisitPointsWithCells::FieldInOut
#include <WorkletMapTopology.h> A control signature tag for input-output (in-place) fields.

A WorkletVisitPointsWithCells always has the output on the points of the topology. The associated pa-
rameter of the invoke should be a vtkm::cont::ArrayHandle, and it must have the same number of values as
the number of points of the topology.

struct FieldInOut : public vtkm::worklet::WorkletMapTopology<VisitTopology, IncidentTopology>::FieldInOut
#include <WorkletMapTopology.h> A control signature tag for input-output (in-place) fields.

A WorkletVisitPointsWithCells always has the output on the points of the topology. The associated pa-
rameter of the invoke should be a vtkm::cont::ArrayHandle, and it must have the same number of values as
the number of points of the topology.

Subclassed by vtkm::worklet::WorkletVisitPointsWithCells::FieldInOutPoint

struct WholeArrayIn : public vtkm::worklet::internal::WorkletBase::WholeArrayIn
#include <WorkletMapTopology.h> ControlSignature tag for whole input arrays.

The WholeArrayIn control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from any place in the array is given to the worklet.

struct WholeArrayOut : public vtkm::worklet::internal::WorkletBase::WholeArrayOut
#include <WorkletMapTopology.h> ControlSignature tag for whole output arrays.

The WholeArrayOut control signature tag specifies an vtkm::cont::ArrayHandle passed to the invoke of
the worklet. An array portal capable of writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible.

struct WholeArrayInOut : public vtkm::worklet::internal::WorkletBase::WholeArrayInOut
#include <WorkletMapTopology.h> ControlSignature tag for whole input/output arrays.

The WholeArrayOut control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.

328 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct AtomicArrayInOut : public vtkm::worklet::internal::WorkletBase::AtomicArrayInOut
#include <WorkletMapTopology.h> ControlSignature tag for whole input/output arrays.

The AtomicArrayInOut control signature tag specifies vtkm::cont::ArrayHandle passed to the invoke of
the worklet. A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in
the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of
a parallel algorithm.

template<typename VisitTopology = Cell, typename IncidentTopology = Point>

struct WholeCellSetIn : public vtkm::worklet::internal::WorkletBase::WholeCellSetIn<Cell, Point>
#include <WorkletMapTopology.h> ControlSignature tag for whole input topology.

The WholeCellSetIn control signature tag specifies a vtkm::cont::CellSet passed to the invoke of the
worklet. A connectivity object capable of finding elements of one type that are incident on elements of a different
type. This can be used to global lookup for arbitrary topology information

struct ExecObject : public vtkm::worklet::internal::WorkletBase::ExecObject
#include <WorkletMapTopology.h> ControlSignature tag for execution object inputs.

This tag represents an execution object that is passed directly from the control environment to the worklet.
A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses of
vtkm::exec::ExecutionObjectBase behave like a factory for objects that work on particular devices. They
do this by implementing a PrepareForExecution() method that takes a device adapter tag and returns an
object that works on that device. That device-specific object is passed directly to the worklet.

A visit points with cells worklet supports the following tags in the parameters of its ExecutionSignature.

struct _1 : public vtkm::placeholders::Arg<1>
#include <WorkletMapTopology.h> Argument placeholders for an ExecutionSignature.

All worklet superclasses declare numeric tags in the form of _1, _2, _3 etc. that are used in the
ExecutionSignature to refer to the corresponding parameter in the ControlSignature.

struct CellCount : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::IncidentElementCount

#include <WorkletMapTopology.h> An execution signature tag to get the number of incident cells.

Each point in a vtkm::cont::CellSet can be incident on a number of cells. This tag causes a
vtkm::IdComponent to be passed to the worklet containing the number of incident cells.

struct CellIndices : public vtkm::worklet::WorkletMapTopology<VisitTopology,
IncidentTopology>::IncidentElementIndices

#include <WorkletMapTopology.h> An execution signature tag to get the indices of the incident cells.

The indices will be provided in a Vec-like object containing vtkm::Id indices for the points in the data set.

struct WorkIndex : public vtkm::exec::arg::WorkIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the work index.

This tag produces a vtkm::Id that uniquely identifies the invocation instance of the worklet. When a worklet is
dispatched, it broken into pieces defined by the input domain and scheduled on independent threads. This tag in
the ExecutionSignature passes the index for this work.

22.2. Topology Map 329

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct VisitIndex : public vtkm::exec::arg::VisitIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the visit index.

This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations operate on
the same input item, which can happen when defining a worklet with scatter.

When a worklet is dispatched, there is a scatter operation defined that optionally allows each input to go to
multiple output entries. When one input is assigned to multiple outputs, there needs to be a mechanism to
uniquely identify which output is which. The visit index is a value between 0 and the number of outputs a
particular input goes to. This tag in the ExecutionSignature passes the visit index for this work.

struct InputIndex : public vtkm::exec::arg::InputIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the input index.

This tag produces a vtkm::Id that identifies the index of the input element, which can differ from the WorkIndex
in a worklet with a scatter.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the input element that the work thread is
currently working on. When a worklet has a scatter associated with it, the input and output indices can be
different.

struct OutputIndex : public vtkm::exec::arg::OutputIndex
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the output index.

This tag produces a vtkm::Id that identifies the index of the output element. (This is generally the same as
WorkIndex.)

When a worklet is dispatched, it broken into pieces defined by the output domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the output element that the work thread is
currently working on. When a worklet has a scatter associated with it, the output and output indices can be
different.

struct ThreadIndices : public vtkm::exec::arg::ThreadIndices
#include <WorkletMapTopology.h> The ExecutionSignature tag to use to get the thread indices.

This tag produces an internal object that manages indices and other metadata of the current thread. Thread
indices objects vary by worklet type, but most users can get the information they need through other signature
tags.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. During this process multiple indices associated with the input and output can be generated. This tag in
the ExecutionSignature passes the index for this work.

struct Device : public vtkm::worklet::internal::WorkletBase::Device
#include <WorkletMapTopology.h> ExecutionSignature tag for getting the device adapter tag.

This tag passes a device adapter tag object. This allows the worklet function to template on or overload itself
based on the type of device that it is being executed on.

Cell to point field maps are typically used for converting fields associated with cells to points so that they can be
interpolated. The following example does a simple averaging, but you can also implement other strategies such as a
volume weighted average.

330 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 4: Implementation and use of a visit points with cells worklet.

1 class AverageCellField : public vtkm::worklet::WorkletVisitPointsWithCells
2 {
3 public:
4 using ControlSignature = void(CellSetIn cellSet,
5 FieldInCell inputCellField,
6 FieldOut outputPointField);
7 using ExecutionSignature = void(CellCount, _2, _3);
8

9 using InputDomain = _1;
10

11 template<typename InputCellFieldType, typename OutputFieldType>
12 VTKM_EXEC void operator()(vtkm::IdComponent numCells,
13 const InputCellFieldType& inputCellField,
14 OutputFieldType& fieldAverage) const
15 {
16 fieldAverage = OutputFieldType(0);
17

18 for (vtkm::IdComponent cellIndex = 0; cellIndex < numCells; cellIndex++)
19 {
20 fieldAverage = fieldAverage + inputCellField[cellIndex];
21 }
22

23 fieldAverage = fieldAverage / OutputFieldType(numCells);
24 }
25 };
26

27 //
28 // Later in the associated Filter class...
29 //
30

31 vtkm::cont::ArrayHandle<T> outFieldData;
32 this->Invoke(AverageCellField{}, inCellSet, inFieldData, outFieldData);

22.3 Neighborhood Mapping

VTK-m provides a pair of worklets that allow easy access to data within a neighborhood of nearby elements. This
simplifies operations like smoothing a field by blending each value with that of its neighbors. This can only be done
on data sets with vtkm::cont::CellSetStructured cell sets where extended adjacencies are easy to find. There are two
flavors of the worklet: a point neighborhood worklet and a cell neighborhood worklet.

22.3. Neighborhood Mapping 331

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

22.3.1 Point Neighborhood

A worklet deriving vtkm::worklet::WorkletPointNeighborhood performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a vtkm::cont::DataSet. While operating on the point, the
worklet has access to field values on nearby points within a neighborhood.

class WorkletPointNeighborhood : public vtkm::worklet::WorkletNeighborhood
Base class for worklets that map over the points in a structured grid with neighborhood information.

The domain of a WorkletPointNeighborhood is a vtkm::cont::CellSetStructured . It visits all the
points in the mesh and provides access to the point field values of the visited point and the field values of the
nearby connected neighborhood of a prescribed size.

Subclassed by vtkm::worklet::AveragePointNeighborhood

A point neighborhood worklet supports the following tags in the parameters of its ControlSignature.

struct CellSetIn : public vtkm::worklet::WorkletNeighborhood::CellSetIn
#include <WorkletPointNeighborhood.h> A control signature tag for input connectivity.

This tag represents the cell set that defines the collection of points the map will operate on. A CellSetIn
argument expects a vtkm::cont::CellSetStructured object in the associated parameter of the invoke.

There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this argument.

struct FieldIn : public vtkm::worklet::WorkletNeighborhood::FieldIn
#include <WorkletPointNeighborhood.h> A control signature tag for input fields.

A FieldIn argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke. Each
invocation of the worklet gets a single value out of this array.

This tag means that the field is read only.

struct FieldInNeighborhood : public vtkm::worklet::WorkletNeighborhood::FieldInNeighborhood
#include <WorkletPointNeighborhood.h> A control signature tag for neighborhood input values.

A neighborhood worklet operates by allowing access to a adjacent element values in a NxNxN patch called a
neighborhood. No matter the size of the neighborhood it is symmetric across its center in each axis, and the
current point value will be at the center For example a 3x3x3 neighborhood would have local indices ranging
from -1 to 1 in each dimension.

This tag specifies a vtkm::cont::ArrayHandle object that holds the values. It is an input array with entries
for each element.

What differentiates FieldInNeighborhood from FieldIn is that FieldInNeighborhood allows the worklet
function to access the field value at the element it is visiting and the field values in the neighborhood
around it. Thus, instead of getting a single value out of the array, each invocation of the worklet gets a
vtkm::exec::FieldNeighborhood object. These objects allow retrieval of field values using indices rela-
tive to the visited element.

struct FieldOut : public vtkm::worklet::WorkletNeighborhood::FieldOut
#include <WorkletPointNeighborhood.h> A control signature tag for output fields.

A FieldOut argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke. The
array is resized before scheduling begins, and each invocation of the worklet sets a single value in the array.

This tag means that the field is write only.

332 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct FieldInOut : public vtkm::worklet::WorkletNeighborhood::FieldInOut
#include <WorkletPointNeighborhood.h> A control signature tag for input-output (in-place) fields.

A FieldInOut argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke.
Each invocation of the worklet gets a single value out of this array, which is replaced by the resulting value after
the worklet completes.

This tag means that the field is read and write.

struct WholeArrayIn : public vtkm::worklet::internal::WorkletBase::WholeArrayIn
#include <WorkletPointNeighborhood.h> ControlSignature tag for whole input arrays.

The WholeArrayIn control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from any place in the array is given to the worklet.

struct WholeArrayOut : public vtkm::worklet::internal::WorkletBase::WholeArrayOut
#include <WorkletPointNeighborhood.h> ControlSignature tag for whole output arrays.

The WholeArrayOut control signature tag specifies an vtkm::cont::ArrayHandle passed to the invoke of
the worklet. An array portal capable of writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible.

struct WholeArrayInOut : public vtkm::worklet::internal::WorkletBase::WholeArrayInOut
#include <WorkletPointNeighborhood.h> ControlSignature tag for whole input/output arrays.

The WholeArrayOut control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.

struct AtomicArrayInOut : public vtkm::worklet::internal::WorkletBase::AtomicArrayInOut
#include <WorkletPointNeighborhood.h> ControlSignature tag for whole input/output arrays.

The AtomicArrayInOut control signature tag specifies vtkm::cont::ArrayHandle passed to the invoke of
the worklet. A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in
the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of
a parallel algorithm.

template<typename VisitTopology = Cell, typename IncidentTopology = Point>

struct WholeCellSetIn : public vtkm::worklet::internal::WorkletBase::WholeCellSetIn<Cell, Point>
#include <WorkletPointNeighborhood.h> ControlSignature tag for whole input topology.

The WholeCellSetIn control signature tag specifies a vtkm::cont::CellSet passed to the invoke of the
worklet. A connectivity object capable of finding elements of one type that are incident on elements of a different
type. This can be used to global lookup for arbitrary topology information

struct ExecObject : public vtkm::worklet::internal::WorkletBase::ExecObject
#include <WorkletPointNeighborhood.h> ControlSignature tag for execution object inputs.

This tag represents an execution object that is passed directly from the control environment to the worklet.
A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses of
vtkm::exec::ExecutionObjectBase behave like a factory for objects that work on particular devices. They
do this by implementing a PrepareForExecution() method that takes a device adapter tag and returns an
object that works on that device. That device-specific object is passed directly to the worklet.

22.3. Neighborhood Mapping 333

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

A point neighborhood worklet supports the following tags in the parameters of its ExecutionSignature.

struct _1 : public vtkm::placeholders::Arg<1>
#include <WorkletPointNeighborhood.h> Argument placeholders for an ExecutionSignature.

All worklet superclasses declare numeric tags in the form of _1, _2, _3 etc. that are used in the
ExecutionSignature to refer to the corresponding parameter in the ControlSignature.

struct Boundary : public vtkm::worklet::WorkletNeighborhood::Boundary
#include <WorkletPointNeighborhood.h> The ExecutionSignature tag to query if the current iteration is
inside the boundary.

This ExecutionSignature tag provides a vtkm::exec::BoundaryState object that provides information
about where the local neighborhood is in relationship to the full mesh. It allows you to query whether the
neighborhood of the current worklet call is completely inside the bounds of the mesh or if it extends beyond the
mesh. This is important as when you are on a boundary the neighboordhood will contain empty values for a
certain subset of values, and in this case the values returned will depend on the boundary behavior.

struct WorkIndex : public vtkm::exec::arg::WorkIndex
#include <WorkletPointNeighborhood.h> The ExecutionSignature tag to use to get the work index.

This tag produces a vtkm::Id that uniquely identifies the invocation instance of the worklet. When a worklet is
dispatched, it broken into pieces defined by the input domain and scheduled on independent threads. This tag in
the ExecutionSignature passes the index for this work.

struct VisitIndex : public vtkm::exec::arg::VisitIndex
#include <WorkletPointNeighborhood.h> The ExecutionSignature tag to use to get the visit index.

This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations operate on
the same input item, which can happen when defining a worklet with scatter.

When a worklet is dispatched, there is a scatter operation defined that optionally allows each input to go to
multiple output entries. When one input is assigned to multiple outputs, there needs to be a mechanism to
uniquely identify which output is which. The visit index is a value between 0 and the number of outputs a
particular input goes to. This tag in the ExecutionSignature passes the visit index for this work.

struct InputIndex : public vtkm::exec::arg::InputIndex
#include <WorkletPointNeighborhood.h> The ExecutionSignature tag to use to get the input index.

This tag produces a vtkm::Id that identifies the index of the input element, which can differ from the WorkIndex
in a worklet with a scatter.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the input element that the work thread is
currently working on. When a worklet has a scatter associated with it, the input and output indices can be
different.

struct OutputIndex : public vtkm::exec::arg::OutputIndex
#include <WorkletPointNeighborhood.h> The ExecutionSignature tag to use to get the output index.

This tag produces a vtkm::Id that identifies the index of the output element. (This is generally the same as
WorkIndex.)

When a worklet is dispatched, it broken into pieces defined by the output domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the output element that the work thread is

334 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

currently working on. When a worklet has a scatter associated with it, the output and output indices can be
different.

struct ThreadIndices : public vtkm::exec::arg::ThreadIndices
#include <WorkletPointNeighborhood.h> The ExecutionSignature tag to use to get the thread indices.

This tag produces an internal object that manages indices and other metadata of the current thread. Thread
indices objects vary by worklet type, but most users can get the information they need through other signature
tags.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. During this process multiple indices associated with the input and output can be generated. This tag in
the ExecutionSignature passes the index for this work.

struct Device : public vtkm::worklet::internal::WorkletBase::Device
#include <WorkletPointNeighborhood.h> ExecutionSignature tag for getting the device adapter tag.

This tag passes a device adapter tag object. This allows the worklet function to template on or overload itself
based on the type of device that it is being executed on.

22.3.2 Cell Neighborhood

A worklet deriving vtkm::worklet::WorkletCellNeighborhood performs a mapping operation that applies a
function (the operator in the worklet) on all the cells of a vtkm::cont::DataSet. While operating on the cell, the
worklet has access to field values on nearby cells within a neighborhood.

class WorkletCellNeighborhood : public vtkm::worklet::WorkletNeighborhood
Base class for worklets that map over the cells in a structured grid with neighborhood information.

The domain of a WorkletCellNeighborhood is a vtkm::cont::CellSetStructured . It visits all the cells
in the mesh and provides access to the cell field values of the visited cell and the field values of the nearby
connected neighborhood of a prescribed size.

A cell neighborhood worklet supports the following tags in the parameters of its ControlSignature.

struct CellSetIn : public vtkm::worklet::WorkletNeighborhood::CellSetIn
#include <WorkletCellNeighborhood.h> A control signature tag for input connectivity.

This tag represents the cell set that defines the collection of points the map will operate on. A CellSetIn
argument expects a vtkm::cont::CellSetStructured object in the associated parameter of the invoke.

There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this argument.

struct FieldIn : public vtkm::worklet::WorkletNeighborhood::FieldIn
#include <WorkletCellNeighborhood.h> A control signature tag for input fields.

A FieldIn argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke. Each
invocation of the worklet gets a single value out of this array.

This tag means that the field is read only.

struct FieldInNeighborhood : public vtkm::worklet::WorkletNeighborhood::FieldInNeighborhood
#include <WorkletCellNeighborhood.h> A control signature tag for neighborhood input values.

22.3. Neighborhood Mapping 335

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

A neighborhood worklet operates by allowing access to a adjacent element values in a NxNxN patch called a
neighborhood. No matter the size of the neighborhood it is symmetric across its center in each axis, and the
current point value will be at the center For example a 3x3x3 neighborhood would have local indices ranging
from -1 to 1 in each dimension.

This tag specifies a vtkm::cont::ArrayHandle object that holds the values. It is an input array with entries
for each element.

What differentiates FieldInNeighborhood from FieldIn is that FieldInNeighborhood allows the worklet
function to access the field value at the element it is visiting and the field values in the neighborhood
around it. Thus, instead of getting a single value out of the array, each invocation of the worklet gets a
vtkm::exec::FieldNeighborhood object. These objects allow retrieval of field values using indices rela-
tive to the visited element.

struct FieldOut : public vtkm::worklet::WorkletNeighborhood::FieldOut
#include <WorkletCellNeighborhood.h> A control signature tag for output fields.

A FieldOut argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke. The
array is resized before scheduling begins, and each invocation of the worklet sets a single value in the array.

This tag means that the field is write only.

struct FieldInOut : public vtkm::worklet::WorkletNeighborhood::FieldInOut
#include <WorkletCellNeighborhood.h> A control signature tag for input-output (in-place) fields.

A FieldInOut argument expects a vtkm::cont::ArrayHandle in the associated parameter of the invoke.
Each invocation of the worklet gets a single value out of this array, which is replaced by the resulting value after
the worklet completes.

This tag means that the field is read and write.

struct WholeArrayIn : public vtkm::worklet::internal::WorkletBase::WholeArrayIn
#include <WorkletCellNeighborhood.h> ControlSignature tag for whole input arrays.

The WholeArrayIn control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from any place in the array is given to the worklet.

struct WholeArrayOut : public vtkm::worklet::internal::WorkletBase::WholeArrayOut
#include <WorkletCellNeighborhood.h> ControlSignature tag for whole output arrays.

The WholeArrayOut control signature tag specifies an vtkm::cont::ArrayHandle passed to the invoke of
the worklet. An array portal capable of writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible.

struct WholeArrayInOut : public vtkm::worklet::internal::WorkletBase::WholeArrayInOut
#include <WorkletCellNeighborhood.h> ControlSignature tag for whole input/output arrays.

The WholeArrayOut control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.

struct AtomicArrayInOut : public vtkm::worklet::internal::WorkletBase::AtomicArrayInOut
#include <WorkletCellNeighborhood.h> ControlSignature tag for whole input/output arrays.

The AtomicArrayInOut control signature tag specifies vtkm::cont::ArrayHandle passed to the invoke of
the worklet. A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in

336 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of
a parallel algorithm.

template<typename VisitTopology = Cell, typename IncidentTopology = Point>

struct WholeCellSetIn : public vtkm::worklet::internal::WorkletBase::WholeCellSetIn<Cell, Point>
#include <WorkletCellNeighborhood.h> ControlSignature tag for whole input topology.

The WholeCellSetIn control signature tag specifies a vtkm::cont::CellSet passed to the invoke of the
worklet. A connectivity object capable of finding elements of one type that are incident on elements of a different
type. This can be used to global lookup for arbitrary topology information

struct ExecObject : public vtkm::worklet::internal::WorkletBase::ExecObject
#include <WorkletCellNeighborhood.h> ControlSignature tag for execution object inputs.

This tag represents an execution object that is passed directly from the control environment to the worklet.
A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses of
vtkm::exec::ExecutionObjectBase behave like a factory for objects that work on particular devices. They
do this by implementing a PrepareForExecution() method that takes a device adapter tag and returns an
object that works on that device. That device-specific object is passed directly to the worklet.

A cell neighborhood worklet supports the following tags in the parameters of its ExecutionSignature.

struct _1 : public vtkm::placeholders::Arg<1>
#include <WorkletCellNeighborhood.h> Argument placeholders for an ExecutionSignature.

All worklet superclasses declare numeric tags in the form of _1, _2, _3 etc. that are used in the
ExecutionSignature to refer to the corresponding parameter in the ControlSignature.

struct Boundary : public vtkm::worklet::WorkletNeighborhood::Boundary
#include <WorkletCellNeighborhood.h> The ExecutionSignature tag to query if the current iteration is inside
the boundary.

This ExecutionSignature tag provides a vtkm::exec::BoundaryState object that provides information
about where the local neighborhood is in relationship to the full mesh. It allows you to query whether the
neighborhood of the current worklet call is completely inside the bounds of the mesh or if it extends beyond the
mesh. This is important as when you are on a boundary the neighboordhood will contain empty values for a
certain subset of values, and in this case the values returned will depend on the boundary behavior.

struct WorkIndex : public vtkm::exec::arg::WorkIndex
#include <WorkletCellNeighborhood.h> The ExecutionSignature tag to use to get the work index.

This tag produces a vtkm::Id that uniquely identifies the invocation instance of the worklet. When a worklet is
dispatched, it broken into pieces defined by the input domain and scheduled on independent threads. This tag in
the ExecutionSignature passes the index for this work.

struct VisitIndex : public vtkm::exec::arg::VisitIndex
#include <WorkletCellNeighborhood.h> The ExecutionSignature tag to use to get the visit index.

This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations operate on
the same input item, which can happen when defining a worklet with scatter.

When a worklet is dispatched, there is a scatter operation defined that optionally allows each input to go to
multiple output entries. When one input is assigned to multiple outputs, there needs to be a mechanism to
uniquely identify which output is which. The visit index is a value between 0 and the number of outputs a
particular input goes to. This tag in the ExecutionSignature passes the visit index for this work.

22.3. Neighborhood Mapping 337

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct InputIndex : public vtkm::exec::arg::InputIndex
#include <WorkletCellNeighborhood.h> The ExecutionSignature tag to use to get the input index.

This tag produces a vtkm::Id that identifies the index of the input element, which can differ from the WorkIndex
in a worklet with a scatter.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the input element that the work thread is
currently working on. When a worklet has a scatter associated with it, the input and output indices can be
different.

struct OutputIndex : public vtkm::exec::arg::OutputIndex
#include <WorkletCellNeighborhood.h> The ExecutionSignature tag to use to get the output index.

This tag produces a vtkm::Id that identifies the index of the output element. (This is generally the same as
WorkIndex.)

When a worklet is dispatched, it broken into pieces defined by the output domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the output element that the work thread is
currently working on. When a worklet has a scatter associated with it, the output and output indices can be
different.

struct ThreadIndices : public vtkm::exec::arg::ThreadIndices
#include <WorkletCellNeighborhood.h> The ExecutionSignature tag to use to get the thread indices.

This tag produces an internal object that manages indices and other metadata of the current thread. Thread
indices objects vary by worklet type, but most users can get the information they need through other signature
tags.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. During this process multiple indices associated with the input and output can be generated. This tag in
the ExecutionSignature passes the index for this work.

struct Device : public vtkm::worklet::internal::WorkletBase::Device
#include <WorkletCellNeighborhood.h> ExecutionSignature tag for getting the device adapter tag.

This tag passes a device adapter tag object. This allows the worklet function to template on or overload itself
based on the type of device that it is being executed on.

22.3.3 Neighborhood Information

As stated earlier in this section, what makes a vtkm::worklet::WorkletPointNeighborhood worklet special is
its ability to get field information in a neighborhood surrounding a point rather than just the point itself. This is done
using the special FieldInNeighborhood in the ControlSignature. When you use this tag, rather than getting the
single field value for the point, you get a vtkm::exec::FieldNeighborhood object.

The vtkm::exec::FieldNeighborhood class contains a vtkm::exec::FieldNeighborhood::Get() method
that retrieves a field value relative to the local neighborhood. vtkm::exec::FieldNeighborhood::Get() takes
the 𝑖, 𝑗, 𝑘 index of the point with respect to the local point. So, calling Get(0,0,0) retrieves at the point being visited.
Likewise, Get(-1,0,0) gets the value to the “left” of the point visited and Get(1,0,0) gets the value to the “right.”

template<typename FieldPortalType>

struct FieldNeighborhood

338 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Retrieves field values from a neighborhood.

FieldNeighborhood manages the retrieval of field values within the neighborhood of a
vtkm::worklet::WorkletPointNeighborhood worklet. The Get methods take ijk indices relative to
the neighborhood (with 0, 0, 0 being the element visted) and return the field value at that part of the neighbor-
hood. If the requested neighborhood is outside the boundary, the value at the nearest boundary will be returned.
A vtkm::exec::BoundaryState object can be used to determine if the neighborhood extends beyond the
boundary of the mesh.

This class is typically constructed using the FieldInNeighborhood tag in an ExecutionSignature. There
is little reason to construct this in user code.

Public Functions

inline ValueType Get(vtkm::IdComponent i, vtkm::IdComponent j, vtkm::IdComponent k) const
Retrieve a field value relative to the visited element.

The index is given as three dimensional i, j, k indices. These indices are relative to the currently visited
element. So, calling Get(0, 0, 0) retrieves the field value at the visited element. Calling Get(-1, 0,
0) retrieves the value to the “left” and Get(1, 0, 0) retrieves the value to the “right.”

If the relative index points outside the bounds of the mesh, Getwill return the value closest to the boundary
(i.e. clamping behvior). For example, if the visited element is at the leftmost index of the mesh, Get(-1,
0, 0) will refer to a value outside the bounds of the mesh. In this case, Get will return the value at the
visited index, which is the closest element at that boundary.

When referring to values in a mesh of less than 3 dimensions (such as a 2D structured), simply use 0 for
the unused dimensions.

inline ValueType GetUnchecked(vtkm::IdComponent i, vtkm::IdComponent j, vtkm::IdComponent k) const
Retrieve a field value relative to the visited element without bounds checking.

GetUnchecked behaves the same as Get except that no bounds checking is done before retrieving the field
value. If the relative index is out of bounds of the mesh, the results are undefined.

GetUnchecked is useful in circumstances where the bounds have already be checked. This prevents wasting
time repeating checks.

inline ValueType Get(const vtkm::Id3 &ijk) const
Retrieve a field value relative to the visited element.

The index is given as three dimensional i, j, k indices. These indices are relative to the currently visited
element. So, calling Get(0, 0, 0) retrieves the field value at the visited element. Calling Get(-1, 0,
0) retrieves the value to the “left” and Get(1, 0, 0) retrieves the value to the “right.”

If the relative index points outside the bounds of the mesh, Getwill return the value closest to the boundary
(i.e. clamping behvior). For example, if the visited element is at the leftmost index of the mesh, Get(-1,
0, 0) will refer to a value outside the bounds of the mesh. In this case, Get will return the value at the
visited index, which is the closest element at that boundary.

When referring to values in a mesh of less than 3 dimensions (such as a 2D structured), simply use 0 for
the unused dimensions.

inline ValueType GetUnchecked(const vtkm::Id3 &ijk) const
Retrieve a field value relative to the visited element without bounds checking.

GetUnchecked behaves the same as Get except that no bounds checking is done before retrieving the field
value. If the relative index is out of bounds of the mesh, the results are undefined.

22.3. Neighborhood Mapping 339

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

GetUnchecked is useful in circumstances where the bounds have already be checked. This prevents wasting
time repeating checks.

Public Members

vtkm::exec::BoundaryState const *const Boundary
The vtkm::exec::BoundaryState used to find field values from local indices.

FieldPortalType Portal
The array portal containing field values.

Example 5: Retrieve neighborhood field value.

1 sum = sum + inputField.Get(i, j, k);

When performing operations on a neighborhood within the mesh, it is often important to know whether the expected
neighborhood is contained completely within the mesh or whether the neighborhood extends beyond the borders of the
mesh. This can be queried using a vtkm::exec::BoundaryState object, which is provided when a Boundary tag
is listed in the ExecutionSignature.

Generally, vtkm::exec::BoundaryState allows you to specify the size of the neighborhood at runtime. The neigh-
borhood size is specified by a radius. The radius specifies the number of items in each direction the neighborhood
extends. So, for example, a point neighborhood with radius 1 would contain a 3×3×3 neighborhood centered around
the point. Likewise, a point neighborhood with radius 2 would contain a 5× 5× 5 neighborhood centered around the
point. vtkm::exec::BoundaryState provides several methods to determine if the neighborhood is contained in the
mesh.

struct BoundaryState
Provides a neighborhood’s placement with respect to the mesh’s boundary.

BoundaryState provides functionality for vtkm::worklet::WorkletPointNeighborhood algorithms to
determine if they are operating on a point near the boundary. It allows you to query about overlaps of the neigh-
borhood and the mesh boundary. It also helps convert local neighborhood ids to the corresponding location in
the mesh.

This class is typically constructed using the Boundary tag in an ExecutionSignature. There is little reason
to construct this in user code.

Unnamed Group

inline bool IsRadiusInXBoundary(vtkm::IdComponent radius) const
Returns true if a neighborhood of the given radius is contained within the bounds of the cell set in the X,
Y, or Z direction. Returns false if the neighborhood extends outside of the boundary of the data in the X,
Y, or Z direction.

The radius defines the size of the neighborhood in terms of how far away it extends from the center. So if
there is a radius of 1, the neighborhood extends 1 unit away from the center in each direction and is 3x3x3.
If there is a radius of 2, the neighborhood extends 2 units for a size of 5x5x5.

inline bool IsRadiusInYBoundary(vtkm::IdComponent radius) const
Returns true if a neighborhood of the given radius is contained within the bounds of the cell set in the X,
Y, or Z direction. Returns false if the neighborhood extends outside of the boundary of the data in the X,
Y, or Z direction.

340 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The radius defines the size of the neighborhood in terms of how far away it extends from the center. So if
there is a radius of 1, the neighborhood extends 1 unit away from the center in each direction and is 3x3x3.
If there is a radius of 2, the neighborhood extends 2 units for a size of 5x5x5.

inline bool IsRadiusInZBoundary(vtkm::IdComponent radius) const
Returns true if a neighborhood of the given radius is contained within the bounds of the cell set in the X,
Y, or Z direction. Returns false if the neighborhood extends outside of the boundary of the data in the X,
Y, or Z direction.

The radius defines the size of the neighborhood in terms of how far away it extends from the center. So if
there is a radius of 1, the neighborhood extends 1 unit away from the center in each direction and is 3x3x3.
If there is a radius of 2, the neighborhood extends 2 units for a size of 5x5x5.

Unnamed Group

inline bool IsNeighborInXBoundary(vtkm::IdComponent offset) const
Returns true if the neighbor at the specified offset is contained within the bounds of the cell set in the X,
Y, or Z direction. Returns false if the neighbor falls outside of the boundary of the data in the X, Y, or Z
direction.

inline bool IsNeighborInYBoundary(vtkm::IdComponent offset) const
Returns true if the neighbor at the specified offset is contained within the bounds of the cell set in the X,
Y, or Z direction. Returns false if the neighbor falls outside of the boundary of the data in the X, Y, or Z
direction.

inline bool IsNeighborInZBoundary(vtkm::IdComponent offset) const
Returns true if the neighbor at the specified offset is contained within the bounds of the cell set in the X,
Y, or Z direction. Returns false if the neighbor falls outside of the boundary of the data in the X, Y, or Z
direction.

Public Functions

inline const vtkm::Id3 &GetCenterIndex() const
Returns the center index of the neighborhood.

This is typically the position of the invocation of the worklet given this boundary condition.

inline bool IsRadiusInBoundary(vtkm::IdComponent radius) const
Returns true if a neighborhood of the given radius is contained within the bounds of the cell set.

Returns false if the neighborhood extends outside of the boundary of the data.

The radius defines the size of the neighborhood in terms of how far away it extends from the center. So if
there is a radius of 1, the neighborhood extends 1 unit away from the center in each direction and is 3x3x3.
If there is a radius of 2, the neighborhood extends 2 units for a size of 5x5x5.

inline bool IsNeighborInBoundary(const vtkm::IdComponent3 &neighbor) const
Returns true if the neighbor at the specified offset vector is contained within the bounds of the cell set.

Returns false if the neighbor falls outside of the boundary of the data.

inline vtkm::IdComponent3 MinNeighborIndices(vtkm::IdComponent radius) const
Returns the minimum neighborhood indices that are within the bounds of the data.

Given a radius for the neighborhood, returns a vtkm::IdComponent3 for the “lower left” (minimum)
index. If the visited point is in the middle of the mesh, the returned triplet is the negative radius for all
components. But if the visited point is near the mesh boundary, then the minimum index will be clipped.

22.3. Neighborhood Mapping 341

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

For example, if the visited point is at [5,5,5] and MinNeighborIndices(2) is called, then [-2,-2,-2] is
returned. However, if the visited point is at [0,1,2] and MinNeighborIndices(2) is called, then [0,-1,-2]
is returned.

inline vtkm::IdComponent3 MaxNeighborIndices(vtkm::IdComponent radius) const
Returns the minimum neighborhood indices that are within the bounds of the data.

Given a radius for the neighborhood, returns a vtkm::IdComponent3 for the “upper right” (maximum)
index. If the visited point is in the middle of the mesh, the returned triplet is the positive radius for all
components. But if the visited point is near the mesh boundary, then the maximum index will be clipped.

For example, if the visited point is at [5,5,5] in a 10 by 10 by 10 mesh and MaxNeighborIndices(2)
is called, then [2,2,2] is returned. However, if the visited point is at [7, 8, 9] in the same mesh and
MaxNeighborIndices(2) is called, then [2, 1, 0] is returned.

inline vtkm::Id3 NeighborIndexToFullIndexClamp(const vtkm::IdComponent3 &neighbor) const
Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the ijk of the equivalent point in the full data set.

If the given value is out of range, the value is clamped to the nearest boundary. For example, if given
a neighbor index that is past the minimum x range of the data, the index at the minimum x boundary is
returned.

inline vtkm::Id3 NeighborIndexToFullIndexClamp(vtkm::IdComponent neighborI, vtkm::IdComponent
neighborJ, vtkm::IdComponent neighborK) const

Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the ijk of the equivalent point in the full data set.

If the given value is out of range, the value is clamped to the nearest boundary. For example, if given
a neighbor index that is past the minimum x range of the data, the index at the minimum x boundary is
returned.

inline vtkm::Id3 NeighborIndexToFullIndex(const vtkm::IdComponent3 &neighbor) const
Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the ijk of the equivalent point in the full data set.

If the given value is out of range, the returned value is undefined.

inline vtkm::Id3 NeighborIndexToFullIndex(vtkm::IdComponent neighborI, vtkm::IdComponent
neighborJ, vtkm::IdComponent neighborK) const

Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the ijk of the equivalent point in the full data set.

If the given value is out of range, the returned value is undefined.

inline vtkm::IdComponent3 ClampNeighborIndex(const vtkm::IdComponent3 &neighbor) const
Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size), clamps it to
the dataset bounds, and returns a new neighborhood index.

For example, if given a neighbor index that is past the minimum x range of the data, the neighbor index of
the minimum x boundary is returned.

inline vtkm::IdComponent3 ClampNeighborIndex(vtkm::IdComponent neighborI, vtkm::IdComponent
neighborJ, vtkm::IdComponent neighborK) const

Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size), clamps it to
the dataset bounds, and returns a new neighborhood index.

For example, if given a neighbor index that is past the minimum x range of the data, the neighbor index of
the minimum x boundary is returned.

342 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::Id NeighborIndexToFlatIndexClamp(const vtkm::IdComponent3 &neighbor) const
Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the flat index of the equivalent point in the full data set.

If the given value is out of range, the value is clamped to the nearest boundary. For example, if given
a neighbor index that is past the minimum x range of the data, the index at the minimum x boundary is
returned.

inline vtkm::Id NeighborIndexToFlatIndexClamp(vtkm::IdComponent neighborI, vtkm::IdComponent
neighborJ, vtkm::IdComponent neighborK) const

Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the flat index of the equivalent point in the full data set.

If the given value is out of range, the value is clamped to the nearest boundary. For example, if given
a neighbor index that is past the minimum x range of the data, the index at the minimum x boundary is
returned.

inline vtkm::Id NeighborIndexToFlatIndex(const vtkm::IdComponent3 &neighbor) const
Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the flat index of the equivalent point in the full data set.

If the given value is out of range, the result is undefined.

inline vtkm::Id NeighborIndexToFlatIndex(vtkm::IdComponent neighborI, vtkm::IdComponent
neighborJ, vtkm::IdComponent neighborK) const

Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size) and returns
the flat index of the equivalent point in the full data set.

If the given value is out of range, the result is undefined.

Public Members

vtkm::Id3 IJK
The 3D index of the visited element.

vtkm::Id3 PointDimensions
The dimensions of the elements in the mesh.

The vtkm::exec::BoundaryState::MinNeighborIndices() and vtkm::exec::BoundaryState::MaxNeighborIndices()
are particularly useful for iterating over the valid portion of the neighborhood.

Example 6: Iterating over the valid portion of a neighborhood.

1 auto minIndices = boundary.MinNeighborIndices(this->NumberOfLayers);
2 auto maxIndices = boundary.MaxNeighborIndices(this->NumberOfLayers);
3

4 T sum = 0;
5 vtkm::IdComponent size = 0;
6 for (vtkm::IdComponent k = minIndices[2]; k <= maxIndices[2]; ++k)
7 {
8 for (vtkm::IdComponent j = minIndices[1]; j <= maxIndices[1]; ++j)
9 {

10 for (vtkm::IdComponent i = minIndices[0]; i <= maxIndices[0]; ++i)
11 {

(continues on next page)

22.3. Neighborhood Mapping 343

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

12 sum = sum + inputField.Get(i, j, k);
13 ++size;
14 }
15 }
16 }

22.3.4 Convolving Small Kernels

A common use case for point neighborhood worklets is to convolve a small kernel with a structured mesh. A very
simple example of this is averaging out the values the values within some distance to the central point. This has the
effect of smoothing out the field (although smoothing filters with better properties exist). The following example shows
a worklet that applies this simple “box” averaging.

Example 7: Implementation and use of a point neighborhood worklet.

1 class ApplyBoxKernel : public vtkm::worklet::WorkletPointNeighborhood
2 {
3 private:
4 vtkm::IdComponent NumberOfLayers;
5

6 public:
7 using ControlSignature = void(CellSetIn cellSet,
8 FieldInNeighborhood inputField,
9 FieldOut outputField);

10 using ExecutionSignature = _3(_2, Boundary);
11

12 using InputDomain = _1;
13

14 ApplyBoxKernel(vtkm::IdComponent kernelSize)
15 {
16 VTKM_ASSERT(kernelSize >= 3);
17 VTKM_ASSERT((kernelSize % 2) == 1);
18

19 this->NumberOfLayers = (kernelSize - 1) / 2;
20 }
21

22 template<typename InputFieldPortalType>
23 VTKM_EXEC typename InputFieldPortalType::ValueType operator()(
24 const vtkm::exec::FieldNeighborhood<InputFieldPortalType>& inputField,
25 const vtkm::exec::BoundaryState& boundary) const
26 {
27 using T = typename InputFieldPortalType::ValueType;
28

29 auto minIndices = boundary.MinNeighborIndices(this->NumberOfLayers);
30 auto maxIndices = boundary.MaxNeighborIndices(this->NumberOfLayers);
31

32 T sum = 0;
33 vtkm::IdComponent size = 0;
34 for (vtkm::IdComponent k = minIndices[2]; k <= maxIndices[2]; ++k)
35 {
36 for (vtkm::IdComponent j = minIndices[1]; j <= maxIndices[1]; ++j)

(continues on next page)

344 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

37 {
38 for (vtkm::IdComponent i = minIndices[0]; i <= maxIndices[0]; ++i)
39 {
40 sum = sum + inputField.Get(i, j, k);
41 ++size;
42 }
43 }
44 }
45

46 return static_cast<T>(sum / size);
47 }
48 };

22.4 Reduce by Key

A worklet deriving vtkm::worklet::WorkletReduceByKey operates on an array of keys and one or more associated
arrays of values. When a reduce by key worklet is invoked, all identical keys are collected and the worklet is called
once for each unique key. Each worklet invocation is given a Vec-like containing all values associated with the unique
key. Reduce by key worklets are very useful for combining like items such as shared topology elements or coincident
points.

Figure 1: The collection of values for a reduce by key worklet.

Figure 1 shows a pictorial representation of how VTK-m collects data for a reduce by key worklet. All calls to a reduce
by key worklet has exactly one array of keys. The key array in this example has 4 unique keys: 0, 1, 2, 4. These 4
unique keys will result in 4 calls to the worklet function. This example also has 2 arrays of values associated with the
keys. (A reduce by keys worklet can have any number of values arrays.)

When the worklet is invoked, all these common keys will be collected with their associated values. The parenthesis
operator of the worklet will be called once per each unique key. The worklet call will be given a Vec-like containing
all values that have the key.

22.4. Reduce by Key 345

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

22.4.1 WorkletReduceByKey Reference

class WorkletReduceByKey : public vtkm::worklet::internal::WorkletBase
Base class for worklets that group elements by keys.

The InputDomain of this worklet is a vtkm::worklet::Keys object, which holds an array of keys. All entries
of this array with the same key are collected together, and the operator of the worklet is called once for each
unique key.

Input arrays are (typically) the same size as the number of keys. When these objects are passed to the operator
of the worklet, all values of the associated key are placed in a Vec-like object. Output arrays get sized by the
number of unique keys, and each call to the operator produces one result for each output.

Subclassed by vtkm::worklet::AverageByKey::AverageWorklet

A reduce by key worklet supports the following tags in the parameters of its ControlSignature.

struct KeysIn : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletReduceByKey.h> A control signature tag for input keys.

A WorkletReduceByKey operates by collecting all identical keys and then executing the worklet on each unique
key. This tag specifies a vtkm::worklet::Keys object that defines and manages these keys.

A WorkletReduceByKey should have exactly one KeysIn tag in its ControlSignature, and the InputDomain
should point to it.

struct ValuesIn : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletReduceByKey.h> A control signature tag for input values associated with the keys.

A WorkletReduceByKey operates by collecting all values associated with identical keys and then giv-
ing the worklet a Vec-like object containing all values with a matching key. This tag specifies an
vtkm::cont::ArrayHandle object that holds the values. The number of values in this array must be equal
to the size of the array used with the KeysIn argument.

struct ValuesInOut : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletReduceByKey.h> A control signature tag for input/output values associated with the keys.

A WorkletReduceByKey operates by collecting all values associated with identical keys and then giv-
ing the worklet a Vec-like object containing all values with a matching key. This tag specifies an
vtkm::cont::ArrayHandle object that holds the values. The number of values in this array must be equal
to the size of the array used with the KeysIn argument.

This tag might not work with scatter operations.

struct ValuesOut : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletReduceByKey.h> A control signature tag for output values associated with the keys.

This tag behaves the same as ValuesInOut except that the array is resized appropriately and no input values are
passed to the worklet. As with ValuesInOut, values the worklet writes to its |Veclike| object get placed in the
location of the original arrays.

Use of ValuesOut is rare.

This tag might not work with scatter operations.

346 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

struct ReducedValuesOut : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletReduceByKey.h> A control signature tag for reduced output values.

A WorkletReduceByKey operates by collecting all identical keys and calling one instance of the worklet
for those identical keys. The worklet then produces a “reduced” value per key. This tag specifies a
vtkm::cont::ArrayHandle object that holds the values. The array is resized to be the number of unique
keys, and each call of the operator sets a single value in the array

struct ReducedValuesIn : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletReduceByKey.h> A control signature tag for reduced input values.

AWorkletReduceByKey operates by collecting all identical keys and calling one instance of the worklet for
those identical keys. The worklet then produces a “reduced” value per key.

This tag specifies a vtkm::cont::ArrayHandle object that holds the values. It is an input array with entries
for each reduced value. The number of values in the array must equal the number of unique keys.

A ReducedValuesIn argument is usually used to pass reduced values from one invoke of a reduce by key
worklet to another invoke of a reduced by key worklet such as in an algorithm that requires iterative steps.

struct ReducedValuesInOut : public vtkm::cont::arg::ControlSignatureTagBase
#include <WorkletReduceByKey.h> A control signature tag for reduced output values.

A WorkletReduceByKey operates by collecting all identical keys and calling one instance of the worklet for
those identical keys. The worklet then produces a “reduced” value per key.

This tag specifies a vtkm::cont::ArrayHandle object that holds the values. It is an input/output array with
entries for each reduced value. The number of values in the array must equal the number of unique keys.

This tag behaves the same as ReducedValuesIn except that the worklet may write values back into the array.
Make sure that the associated parameter to the worklet operator is a reference so that the changed value gets
written back to the array.

struct WholeArrayIn : public vtkm::worklet::internal::WorkletBase::WholeArrayIn
#include <WorkletReduceByKey.h> ControlSignature tag for whole input arrays.

The WholeArrayIn control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from any place in the array is given to the worklet.

struct WholeArrayOut : public vtkm::worklet::internal::WorkletBase::WholeArrayOut
#include <WorkletReduceByKey.h> ControlSignature tag for whole output arrays.

The WholeArrayOut control signature tag specifies an vtkm::cont::ArrayHandle passed to the invoke of
the worklet. An array portal capable of writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible.

struct WholeArrayInOut : public vtkm::worklet::internal::WorkletBase::WholeArrayInOut
#include <WorkletReduceByKey.h> ControlSignature tag for whole input/output arrays.

The WholeArrayOut control signature tag specifies a vtkm::cont::ArrayHandle passed to the invoke of the
worklet. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.

struct AtomicArrayInOut : public vtkm::worklet::internal::WorkletBase::AtomicArrayInOut

22.4. Reduce by Key 347

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

#include <WorkletReduceByKey.h> ControlSignature tag for whole input/output arrays.

The AtomicArrayInOut control signature tag specifies vtkm::cont::ArrayHandle passed to the invoke of
the worklet. A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in
the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of
a parallel algorithm.

template<typename VisitTopology = Cell, typename IncidentTopology = Point>

struct WholeCellSetIn : public vtkm::worklet::internal::WorkletBase::WholeCellSetIn<Cell, Point>
#include <WorkletReduceByKey.h> ControlSignature tag for whole input topology.

The WholeCellSetIn control signature tag specifies a vtkm::cont::CellSet passed to the invoke of the
worklet. A connectivity object capable of finding elements of one type that are incident on elements of a different
type. This can be used to global lookup for arbitrary topology information

struct ExecObject : public vtkm::worklet::internal::WorkletBase::ExecObject
#include <WorkletReduceByKey.h> ControlSignature tag for execution object inputs.

This tag represents an execution object that is passed directly from the control environment to the worklet.
A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses of
vtkm::exec::ExecutionObjectBase behave like a factory for objects that work on particular devices. They
do this by implementing a PrepareForExecution() method that takes a device adapter tag and returns an
object that works on that device. That device-specific object is passed directly to the worklet.

A reduce by key worklet supports the following tags in the parameters of its ExecutionSignature.

struct _1 : public vtkm::placeholders::Arg<1>
#include <WorkletReduceByKey.h> Argument placeholders for an ExecutionSignature.

All worklet superclasses declare numeric tags in the form of _1, _2, _3 etc. that are used in the
ExecutionSignature to refer to the corresponding parameter in the ControlSignature.

struct ValueCount : public vtkm::exec::arg::ValueCount
#include <WorkletReduceByKey.h> The ExecutionSignature tag to get the number of values.

A WorkletReduceByKey operates by collecting all values associated with identical keys and then giving the
worklet a Vec-like object containing all values with a matching key. This tag produces a vtkm::IdComponent
that is equal to the number of times the key associated with this call to the worklet occurs in the input. This is
the same size as the Vec-like objects provided by ValuesIn arguments.

struct WorkIndex : public vtkm::exec::arg::WorkIndex
#include <WorkletReduceByKey.h> The ExecutionSignature tag to use to get the work index.

This tag produces a vtkm::Id that uniquely identifies the invocation instance of the worklet. When a worklet is
dispatched, it broken into pieces defined by the input domain and scheduled on independent threads. This tag in
the ExecutionSignature passes the index for this work.

struct VisitIndex : public vtkm::exec::arg::VisitIndex
#include <WorkletReduceByKey.h> The ExecutionSignature tag to use to get the visit index.

This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations operate on
the same input item, which can happen when defining a worklet with scatter.

When a worklet is dispatched, there is a scatter operation defined that optionally allows each input to go to
multiple output entries. When one input is assigned to multiple outputs, there needs to be a mechanism to

348 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

uniquely identify which output is which. The visit index is a value between 0 and the number of outputs a
particular input goes to. This tag in the ExecutionSignature passes the visit index for this work.

struct InputIndex : public vtkm::exec::arg::InputIndex
#include <WorkletReduceByKey.h> The ExecutionSignature tag to use to get the input index.

This tag produces a vtkm::Id that identifies the index of the input element, which can differ from the WorkIndex
in a worklet with a scatter.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the input element that the work thread is
currently working on. When a worklet has a scatter associated with it, the input and output indices can be
different.

struct OutputIndex : public vtkm::exec::arg::OutputIndex
#include <WorkletReduceByKey.h> The ExecutionSignature tag to use to get the output index.

This tag produces a vtkm::Id that identifies the index of the output element. (This is generally the same as
WorkIndex.)

When a worklet is dispatched, it broken into pieces defined by the output domain and scheduled on independent
threads. This tag in the ExecutionSignature passes the index of the output element that the work thread is
currently working on. When a worklet has a scatter associated with it, the output and output indices can be
different.

struct ThreadIndices : public vtkm::exec::arg::ThreadIndices
#include <WorkletReduceByKey.h> The ExecutionSignature tag to use to get the thread indices.

This tag produces an internal object that manages indices and other metadata of the current thread. Thread
indices objects vary by worklet type, but most users can get the information they need through other signature
tags.

When a worklet is dispatched, it broken into pieces defined by the input domain and scheduled on independent
threads. During this process multiple indices associated with the input and output can be generated. This tag in
the ExecutionSignature passes the index for this work.

struct Device : public vtkm::worklet::internal::WorkletBase::Device
#include <WorkletReduceByKey.h> ExecutionSignature tag for getting the device adapter tag.

This tag passes a device adapter tag object. This allows the worklet function to template on or overload itself
based on the type of device that it is being executed on.

22.4.2 Key Objects

As specified in its documentation, the InputDomain of a WorkletReducedByKey has to be a KeysIn argu-
ment. Unlike simple mapping worklets, the control environment object passed as the KeysIn cannot be a simple
vtkm::cont::ArrayHandle. Rather, this argument has to be given a vtkm::worklet::Keys object. This object
manages an array of keys by reorganizing (i.e. sorting) the keys and finding duplicated keys that should be merged. A
vtkm::worklet::Keys object can be constructed by simply providing a vtkm::cont::ArrayHandle to use as the
keys.

template<typename T>

class Keys : public vtkm::worklet::internal::KeysBase

22.4. Reduce by Key 349

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Manage keys for a vtkm::worklet::WorkletReduceByKey.

The vtkm::worklet::WorkletReduceByKey worklet takes an array of keys for its input domain, finds all
identical keys, and runs a worklet that produces a single value for every key given all matching values. This class
is used as the associated input for the keys input domain.

Keys is templated on the key array handle type and accepts an instance of this array handle as its constructor. It
builds the internal structures needed to use the keys.

The same Keys structure can be used for multiple different invokes of different or the same worklets. When used
in this way, the processing done in the Keys structure is reused for all the invokes. This is more efficient than
creating a different Keys structure for each invoke.

Public Functions

template<typename KeyStorage>
inline Keys(const vtkm::cont::ArrayHandle<KeyType, KeyStorage> &keys, vtkm::cont::DeviceAdapterId

device = vtkm::cont::DeviceAdapterTagAny())
Construct a Keys class from an array of keys.

Given an array of keys, construct a Keys class that will manage using these keys to perform reduce-by-key
operations.

The input keys object is not modified and the result is not stable sorted. This is the equivalent of calling
BuildArrays(keys, KeysSortType::Unstable, device).

template<typename KeyArrayType>
void BuildArrays(const KeyArrayType &keys, KeysSortType sort, vtkm::cont::DeviceAdapterId device =

vtkm::cont::DeviceAdapterTagAny())
Build the internal arrays without modifying the input.

This is more efficient for stable sorted arrays, but requires an extra copy of the keys for unstable sorting.

template<typename KeyArrayType>
void BuildArraysInPlace(KeyArrayType &keys, KeysSortType sort, vtkm::cont::DeviceAdapterId device =

vtkm::cont::DeviceAdapterTagAny())
Build the internal arrays and also sort the input keys.

This is more efficient for unstable sorting, but requires an extra copy for stable sorting.

inline KeyArrayHandleType GetUniqueKeys() const
Returns an array of unique keys.

The order of keys in this array describes the order that result values will be placed in a
vtkm::worklet::WorkletReduceByKey.

vtkm::Id GetInputRange() const
Returns the input range of a keys object when used as an input domain.

This will be equal to the number of unique keys.

vtkm::cont::ArrayHandle<vtkm::Id> GetSortedValuesMap() const
Returns the array that maps each input value to an array of sorted keys.

This array is used internally as the indices to a vtkm::cont::ArrayHandlePermutation to order input
values with the grouped keys so that they can then be grouped. This is an internal array that is seldom of
use to code outside the vtkm::worklet::WorkletReduceByKey implementation.

350 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::ArrayHandle<vtkm::Id> GetOffsets() const
Returns an offsets array to group keys.

Given an array of sorted keys (or more frequently values permuted to the sorting of the keys), this array of
indices can be used as offsets for a vtkm::cont::ArrayHandleGroupVecVariable. This is an internal
array that is seldom of use to code outside the vtkm::worklet::WorkletReduceByKey implementation.

vtkm::Id GetNumberOfValues() const
Returns the number of input keys and values used to build this structure.

This is also the size of input arrays to a vtkm::worklet::WorkletReduceByKey.

22.4.3 Reduce by Key Examples

As stated earlier, the reduce by key worklet is useful for collecting like values. To demonstrate the reduce by key
worklet, we will create a simple mechanism to generate a histogram in parallel. (VTK-m comes with its own histogram
implementation, but we create our own version here for a simple example.) The way we can use the reduce by key
worklet to compute a histogram is to first identify which bin of the histogram each value is in, and then use the bin
identifiers as the keys to collect the information. To help with this example, we will first create a helper class named
BinScalars that helps us manage the bins.

Example 8: A helper class to manage histogram bins.

1 class BinScalars
2 {
3 public:
4 VTKM_EXEC_CONT
5 BinScalars(const vtkm::Range& range, vtkm::Id numBins)
6 : Range(range)
7 , NumBins(numBins)
8 {
9 }

10

11 VTKM_EXEC_CONT
12 BinScalars(const vtkm::Range& range, vtkm::Float64 tolerance)
13 : Range(range)
14 {
15 this->NumBins = vtkm::Id(this->Range.Length() / tolerance) + 1;
16 }
17

18 VTKM_EXEC_CONT
19 vtkm::Id GetBin(vtkm::Float64 value) const
20 {
21 vtkm::Float64 ratio = (value - this->Range.Min) / this->Range.Length();
22 vtkm::Id bin = vtkm::Id(ratio * this->NumBins);
23 bin = vtkm::Max(bin, vtkm::Id(0));
24 bin = vtkm::Min(bin, this->NumBins - 1);
25 return bin;
26 }
27

28 private:
29 vtkm::Range Range;
30 vtkm::Id NumBins;
31 };

22.4. Reduce by Key 351

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Using this helper class, we can easily create a simple map worklet that takes values, identifies a bin, and writes that
result out to an array that can be used as keys.

Example 9: A simple map worklet to identify histogram bins, which will
be used as keys.

1 struct IdentifyBins : vtkm::worklet::WorkletMapField
2 {
3 using ControlSignature = void(FieldIn data, FieldOut bins);
4 using ExecutionSignature = _2(_1);
5 using InputDomain = _1;
6

7 BinScalars Bins;
8

9 VTKM_CONT
10 IdentifyBins(const BinScalars& bins)
11 : Bins(bins)
12 {
13 }
14

15 VTKM_EXEC
16 vtkm::Id operator()(vtkm::Float64 value) const { return Bins.GetBin(value); }
17 };

Once you generate an array to be used as keys, you need to make a vtkm::worklet::Keys object. The
vtkm::worklet::Keys object is what will be passed to the vtkm::cont::Invoker for the argument associated
with the KeysIn ControlSignature tag. This of course happens in the control environment after calling the
vtkm::cont::Invoker for our worklet for generating the keys.

Example 10: Creating a vtkm::worklet::Keys object.

1 vtkm::cont::ArrayHandle<vtkm::Id> binIds;
2 this->Invoke(IdentifyBins(bins), valuesArray, binIds);
3

4 vtkm::worklet::Keys<vtkm::Id> keys(binIds);

Now that we have our keys, we are finally ready for our reduce by key worklet. A histogram is simply a count of the
number of elements in a bin. In this case, we do not really need any values for the keys. We just need the size of the
bin, which can be identified with the internally calculated ValueCount.

A complication we run into with this histogram filter is that it is possible for a bin to be empty. If a bin is empty, there
will be no key associated with that bin, and the vtkm::cont::Invoker will not call the worklet for that bin/key. To
manage this case, we have to initialize an array with 0’s and then fill in the non-zero entities with our reduce by key
worklet. We can find the appropriate entry into the array by using the key, which is actually the bin identifier, which
doubles as an index into the histogram. The following example gives the implementation for the reduce by key worklet
that fills in positive values of the histogram.

Example 11: A reduce by key worklet to write histogram bin counts.

1 struct CountBins : vtkm::worklet::WorkletReduceByKey
2 {
3 using ControlSignature = void(KeysIn keys, WholeArrayOut binCounts);
4 using ExecutionSignature = void(_1, ValueCount, _2);
5 using InputDomain = _1;
6

(continues on next page)

352 Chapter 22. Worklet Types

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

7 template<typename BinCountsPortalType>
8 VTKM_EXEC void operator()(vtkm::Id binId,
9 vtkm::IdComponent numValuesInBin,

10 BinCountsPortalType& binCounts) const
11 {
12 binCounts.Set(binId, numValuesInBin);
13 }
14 };

The previous example demonstrates the basic usage of the reduce by key worklet to count common keys. A more com-
mon use case is to collect values associated with those keys, do an operation on those values, and provide a “reduced”
value for each unique key. The following example demonstrates such an operation by providing a worklet that finds the
average of all values in a particular bin rather than counting them.

Example 12: A worklet that averages all values with a common key.

1 struct BinAverage : vtkm::worklet::WorkletReduceByKey
2 {
3 using ControlSignature = void(KeysIn keys,
4 ValuesIn originalValues,
5 ReducedValuesOut averages);
6 using ExecutionSignature = _3(_2);
7 using InputDomain = _1;
8

9 template<typename OriginalValuesVecType>
10 VTKM_EXEC typename OriginalValuesVecType::ComponentType operator()(
11 const OriginalValuesVecType& originalValues) const
12 {
13 typename OriginalValuesVecType::ComponentType sum = 0;
14 for (vtkm::IdComponent index = 0; index < originalValues.GetNumberOfComponents();
15 index++)
16 {
17 sum = sum + originalValues[index];
18 }
19 return sum / originalValues.GetNumberOfComponents();
20 }
21 };

To complete the code required to average all values that fall into the same bin, the following example shows the full
code required to invoke such a worklet. Note that this example repeats much of the previous examples, but shows it in
a more complete context.

Example 13: Using a reduce by key worklet to average values falling into
the same bin.

1 struct IdentifyBins : vtkm::worklet::WorkletMapField
2 {
3 using ControlSignature = void(FieldIn data, FieldOut bins);
4 using ExecutionSignature = _2(_1);
5 using InputDomain = _1;
6

7 BinScalars Bins;
8

(continues on next page)

22.4. Reduce by Key 353

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

9 VTKM_CONT
10 IdentifyBins(const BinScalars& bins)
11 : Bins(bins)
12 {
13 }
14

15 VTKM_EXEC
16 vtkm::Id operator()(vtkm::Float64 value) const { return Bins.GetBin(value); }
17 };
18

19 struct BinAverage : vtkm::worklet::WorkletReduceByKey
20 {
21 using ControlSignature = void(KeysIn keys,
22 ValuesIn originalValues,
23 ReducedValuesOut averages);
24 using ExecutionSignature = _3(_2);
25 using InputDomain = _1;
26

27 template<typename OriginalValuesVecType>
28 VTKM_EXEC typename OriginalValuesVecType::ComponentType operator()(
29 const OriginalValuesVecType& originalValues) const
30 {
31 typename OriginalValuesVecType::ComponentType sum = 0;
32 for (vtkm::IdComponent index = 0; index < originalValues.GetNumberOfComponents();
33 index++)
34 {
35 sum = sum + originalValues[index];
36 }
37 return sum / originalValues.GetNumberOfComponents();
38 }
39 };
40

41 //
42 // Later in the associated Filter class...
43 //
44

45 vtkm::Range range = vtkm::cont::ArrayRangeCompute(inField).ReadPortal().Get(0);
46 BinScalars bins(range, numBins);
47

48 vtkm::cont::ArrayHandle<vtkm::Id> binIds;
49 this->Invoke(IdentifyBins(bins), inField, binIds);
50

51 vtkm::worklet::Keys<vtkm::Id> keys(binIds);
52

53 vtkm::cont::ArrayHandle<T> combinedValues;
54

55 this->Invoke(BinAverage{}, keys, inField, combinedValues);

354 Chapter 22. Worklet Types

CHAPTER

TWENTYTHREE

EXTENDED FILTER IMPLEMENTATIONS

In Chapter 18 (Simple Worklets) and Chapter 22 (Worklet Types) we discuss how to implement an algorithm in the
VTK-m framework by creating a worklet. For simplicity, worklet algorithms are wrapped in what are called filter
objects for general usage. Chapter 9 (Running Filters) introduces the concept of filters, and Chapter 10 (Provided
Filters) documents those that come with the VTK-m library. Chapter 19 (Basic Filter Implementation) gives a brief
introduction on implementing filters. This chapter elaborates on building new filter objects by introducing new filter
types. These will be used to wrap filters around the extended worklet examples in Chapter 22 (Worklet Types).

Unsurprisingly, the base filter objects are contained in the vtkm::filter package. In particular, all filter objects inherit
from vtkm::filter::Filter, either directly or indirectly. The filter implementation must override the protected pure
virtual method vtkm::filter::Filter::DoExecute(). The base class will call this method to run the operation
of the filter.

The vtkm::filter::Filter::DoExecute() method has a single argument that is a vtkm::cont::DataSet. The
vtkm::cont::DataSet contains the data on which the filter will operate. vtkm::filter::Filter::DoExecute()
must then return a new vtkm::cont::DataSet containing the derived data. The vtkm::cont::DataSet should be
created with one of the vtkm::filter::Filter::CreateResult() methods.

A filter implementation may also optionally override the vtkm::filter::Filter::DoExecutePartitions().
This method is similar to vtkm::filter::Filter::DoExecute() except that it takes
and returns a vtkm::cont::PartitionedDataSet object. If a filter does not pro-
vide a vtkm::filter::Filter::DoExecutePartitions() method, then if given a
vtkm::cont::PartitionedDataSet, the base class will call vtkm::filter::Filter::DoExecute() on
each of the partitions and build a vtkm::cont::PartitionedDataSet with the results.

In addition to (or instead of) operating on the geometric structure of a vtkm::cont::DataSet, a filter will commonly
take one or more fields from the input vtkm::cont::DataSet and write one or more fields to the result. For this
reason, vtkm::filter::Filter provides convenience methods to select input fields and output field names.

It also provides a method named vtkm::filter::Filter::GetFieldFromDataSet() that can be used to get
the input fields from the vtkm::cont::DataSet passed to vtkm::filter::Filter::DoExecute(). When get-
ting a field with vtkm::filter::Filter::GetFieldFromDataSet(), you get a vtkm::cont::Field object.
Before you can operate on the vtkm::cont::Field , you have to convert it to a vtkm::cont::ArrayHandle.
vtkm::filter::Filter::CastAndCallScalarField() can be used to do this conversion. It takes the field ob-
ject as the first argument and attempts to convert it to an vtkm::cont::ArrayHandle of different types. When it
finds the correct type, it calls the provided functor with the appropriate vtkm::cont::ArrayHandle. The similar
vtkm::filter::Filter::CastAndCallVecField() does the same thing to find an vtkm::cont::ArrayHandle
with vtkm::Vec’s of a selected length, and vtkm::filter::Filter::CastAndCallVariableVecField() does
the same thing but will find vtkm::Vec’s of any length.

The remainder of this chapter will provide some common patterns of filter operation based on the data they use and
generate.

355

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

23.1 Deriving Fields from other Fields

A common type of filter is one that generates a new field that is derived from one or more existing fields or point
coordinates on the data set. For example, mass, volume, and density are interrelated, and any one can be derived
from the other two. Typically, you would use vtkm::filter::Filter::GetFieldFromDataSet() to retrieve the
input fields, one of the vtkm::filter::Filter::CastAndCall()methods to resolve the array type of the field, and
finally use vtkm::filter::Filter::CreateResultField() to produce the output.

In this section we provide an example implementation of a field filter that wraps the “magnitude” worklet provided in
Example 1. By C++ convention, object implementations are split into two files. The first file is a standard header file
with a .h extension that contains the declaration of the filter class without the implementation. So we would expect
the following code to be in a file named FieldMagnitude.h.

Example 1: Header declaration for a field filter.

1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace vector_calculus
6 {
7

8 class VTKM_FILTER_VECTOR_CALCULUS_EXPORT FieldMagnitude : public vtkm::filter::Filter
9 {

10 public:
11 VTKM_CONT FieldMagnitude();
12

13 VTKM_CONT vtkm::cont::DataSet DoExecute(const vtkm::cont::DataSet& inDataSet) override;
14 };
15

16 } // namespace vector_calculus
17 } // namespace filter
18 } // namespace vtkm

You may notice in Example 1, line 8 there is a special macro names VTKM_FILTER_VECTOR_CALCULUS_EXPORT.
This macro tells the C++ compiler that the class FieldMagnitude is going to be exported from a library. More
specifically, the CMake for VTK-m’s build will generate a header file containing this export macro for the associated
library. By VTK-m’s convention, a filter in the vtkm::filter::vector_calculus will be defined in the vtkm/
filter/vector_calculus directory. When defining the targets for this library, CMake will create a header file named
vtkm_filter_vector_calculus.h that contains the macro named VTKM_FILTER_VECTOR_CALCULUS_EXPORT.
This macro will provide the correct modifiers for the particular C++ compiler being used to export the class from
the library. If this macro is left out, then the library will work on some platforms, but on other platforms will produce
a linker error for missing symbols.

Once the filter class is declared in the .h file, the implementation filter is by convention given in a separate .cxx file.
So the continuation of our example that follows would be expected in a file named FieldMagnitude.cxx.

Example 2: Implementation of a field filter.

1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace vector_calculus

(continues on next page)

356 Chapter 23. Extended Filter Implementations

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

6 {
7

8 VTKM_CONT
9 FieldMagnitude::FieldMagnitude()

10 {
11 this->SetOutputFieldName("");
12 }
13

14 VTKM_CONT vtkm::cont::DataSet FieldMagnitude::DoExecute(
15 const vtkm::cont::DataSet& inDataSet)
16 {
17 vtkm::cont::Field inField = this->GetFieldFromDataSet(inDataSet);
18

19 vtkm::cont::UnknownArrayHandle outField;
20

21 // Use a C++ lambda expression to provide a callback for CastAndCall. The lambda
22 // will capture references to local variables like outFieldArray (using `[&]`)
23 // that it can read and write.
24 auto resolveType = [&](const auto& inFieldArray) {
25 using InArrayHandleType = std::decay_t<decltype(inFieldArray)>;
26 using ComponentType =
27 typename vtkm::VecTraits<typename InArrayHandleType::ValueType>::ComponentType;
28

29 vtkm::cont::ArrayHandle<ComponentType> outFieldArray;
30

31 this->Invoke(ComputeMagnitude{}, inFieldArray, outFieldArray);
32 outField = outFieldArray;
33 };
34

35 this->CastAndCallVecField<3>(inField, resolveType);
36

37 std::string outFieldName = this->GetOutputFieldName();
38 if (outFieldName == "")
39 {
40 outFieldName = inField.GetName() + "_magnitude";
41 }
42

43 return this->CreateResultField(
44 inDataSet, outFieldName, inField.GetAssociation(), outField);
45 }
46

47 } // namespace vector_calculus
48 } // namespace filter
49 } // namespace vtkm

The implementation of vtkm::filter::Filter::DoExecute() first pulls the input field from the pro-
vided vtkm::cont::DataSet using vtkm::filter::Filter::GetFieldFromDataSet(). It then uses
vtkm::filter::Filter::CastAndCallVecField() to determine what type of vtkm::cont::ArrayHandle is
contained in the input field. That calls a lambda function that invokes a worklet to create the output field.

template<vtkm::IdComponent VecSize, typename Functor, typename ...Args>
inline void vtkm::filter::Filter::CastAndCallVecField(const vtkm::cont::UnknownArrayHandle

&fieldArray, Functor &&functor, Args&&... args)
const

23.1. Deriving Fields from other Fields 357

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Convenience method to get the array from a filter’s input vector field.

A field filter typically gets its input fields using the internal GetFieldFromDataSet. To use this field
in a worklet, it eventually needs to be converted to an vtkm::cont::ArrayHandle. If the input
field is limited to be a vector field with vectors of a specific size, then this method provides a conve-
nient way to determine the correct array type. Like other CastAndCall methods, it takes as input a
vtkm::cont::Field (or vtkm::cont::UnknownArrayHandle) and a function/functor to call with the appro-
priate vtkm::cont::ArrayHandle type. You also have to provide the vector size as the first template argument.
For example CastAndCallVecField<3>(field, functor);.

template<vtkm::IdComponent VecSize, typename Functor, typename ...Args>
inline void vtkm::filter::Filter::CastAndCallVecField(const vtkm::cont::Field &field, Functor

&&functor, Args&&... args) const
Convenience method to get the array from a filter’s input vector field.

A field filter typically gets its input fields using the internal GetFieldFromDataSet. To use this field
in a worklet, it eventually needs to be converted to an vtkm::cont::ArrayHandle. If the input
field is limited to be a vector field with vectors of a specific size, then this method provides a conve-
nient way to determine the correct array type. Like other CastAndCall methods, it takes as input a
vtkm::cont::Field (or vtkm::cont::UnknownArrayHandle) and a function/functor to call with the appro-
priate vtkm::cont::ArrayHandle type. You also have to provide the vector size as the first template argument.
For example CastAndCallVecField<3>(field, functor);.

Did You Know?

The filter implemented in Example 2 is limited to only find the magnitude of vtkm::Vec’s with 3 components. It
may be the case you wish to implement a filter that operates on vtkm::Vec’s of multiple sizes (or perhaps even any
size). Chapter ref{chap:UnknownArrayHandle} discusses how you can use the vtkm::cont::UnknownArrayHandle
contained in the vtkm::cont::Field to more expressively decide what types to check for.

template<typename Functor, typename ...Args>
inline void vtkm::filter::Filter::CastAndCallVariableVecField(const

vtkm::cont::UnknownArrayHandle
&fieldArray, Functor &&functor,
Args&&... args) const

This method is like CastAndCallVecField except that it can be used for a field of unknown vector size (or
scalars).

This method will call the given functor with an vtkm::cont::ArrayHandleRecombineVec.

Note that there are limitations with using vtkm::cont::ArrayHandleRecombineVec within a worklet.
Because the size of the vectors are not known at compile time, you cannot just create an intermedi-
ate vtkm::Vec of the correct size. Typically, you must allocate the output array (for example, with
vtkm::cont::ArrayHandleRuntimeVec), and the worklet must iterate over the components and store them
in the prealocated output.

template<typename Functor, typename ...Args>
inline void vtkm::filter::Filter::CastAndCallVariableVecField(const vtkm::cont::Field &field, Functor

&&functor, Args&&... args) const
This method is like CastAndCallVecField except that it can be used for a field of unknown vector size (or
scalars).

This method will call the given functor with an vtkm::cont::ArrayHandleRecombineVec.

Note that there are limitations with using vtkm::cont::ArrayHandleRecombineVec within a worklet.
Because the size of the vectors are not known at compile time, you cannot just create an intermedi-

358 Chapter 23. Extended Filter Implementations

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

ate vtkm::Vec of the correct size. Typically, you must allocate the output array (for example, with
vtkm::cont::ArrayHandleRuntimeVec), and the worklet must iterate over the components and store them
in the prealocated output.

Finally, vtkm::filter::Filter::CreateResultField() generates the output of the fil-
ter. Note that all fields need a unique name, which is the reason for the second argu-
ment to vtkm::filter::Filter::CreateResult(). The vtkm::filter::Filter base class
contains a pair of methods named vtkm::filter::Filter::SetOutputFieldName() and
vtkm::filter::Filter::GetOutputFieldName() to allow users to specify the name of output fields. The
vtkm::filter::Filter::DoExecute() method should respect the given output field name. However, it is also
good practice for the filter to have a default name if none is given. This might be simply specifying a name in the
constructor, but it is worthwhile for many filters to derive a name based on the name of the input field.

23.2 Deriving Fields from Topology

The previous example performed a simple operation on each element of a field independently. However, it is also
common for a “field” filter to take into account the topology of a data set. In this case, the implementation involves
pulling a vtkm::cont::CellSet from the input vtkm::cont::DataSet and performing operations on fields as-
sociated with different topological elements. The steps involve calling vtkm::cont::DataSet::GetCellSet() to
get access to the vtkm::cont::CellSet object and then using topology-based worklets, described in Section 22.2
(Topology Map), to operate on them.

In this section we provide an example implementation of a field filter on cells that wraps the “cell center” worklet
provided in Example 3.

Example 3: Header declaration for a field filter using cell topology.

1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace field_conversion
6 {
7

8 class VTKM_FILTER_FIELD_CONVERSION_EXPORT CellCenters : public vtkm::filter::Filter
9 {

10 public:
11 VTKM_CONT CellCenters();
12

13 VTKM_CONT vtkm::cont::DataSet DoExecute(const vtkm::cont::DataSet& inDataSet) override;
14 };
15

16 } // namespace field_conversion
17 } // namespace filter
18 } // namespace vtkm

As with any subclass of vtkm::filter::Filter, the filter implements vtkm::filter::Filter::DoExecute(),
which in this case invokes a worklet to compute a new field array and then return a newly constructed
vtkm::cont::DataSet object.

23.2. Deriving Fields from Topology 359

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 4: Implementation of a field filter using cell topology.

1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace field_conversion
6 {
7

8 VTKM_CONT
9 CellCenters::CellCenters()

10 {
11 this->SetOutputFieldName("");
12 }
13

14 VTKM_CONT cont::DataSet CellCenters::DoExecute(const vtkm::cont::DataSet& inDataSet)
15 {
16 vtkm::cont::Field inField = this->GetFieldFromDataSet(inDataSet);
17

18 if (!inField.IsPointField())
19 {
20 throw vtkm::cont::ErrorBadType("Cell Centers filter operates on point data.");
21 }
22

23 vtkm::cont::UnknownArrayHandle outUnknownArray;
24

25 auto resolveType = [&](const auto& inArray) {
26 using InArrayHandleType = std::decay_t<decltype(inArray)>;
27 using ValueType = typename InArrayHandleType::ValueType;
28 vtkm::cont::ArrayHandle<ValueType> outArray;
29

30 this->Invoke(vtkm::worklet::CellCenter{}, inDataSet.GetCellSet(), inArray, outArray);
31

32 outUnknownArray = outArray;
33 };
34

35 vtkm::cont::UnknownArrayHandle inUnknownArray = inField.GetData();
36 inUnknownArray.CastAndCallForTypesWithFloatFallback<VTKM_DEFAULT_TYPE_LIST,
37 VTKM_DEFAULT_STORAGE_LIST>(
38 resolveType);
39

40 std::string outFieldName = this->GetOutputFieldName();
41 if (outFieldName == "")
42 {
43 outFieldName = inField.GetName() + "_center";
44 }
45

46 return this->CreateResultFieldCell(inDataSet, outFieldName, outUnknownArray);
47 }
48

49 } // namespace field_conversion
50 } // namespace filter
51 } // namespace vtkm

360 Chapter 23. Extended Filter Implementations

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

23.3 Data Set Filters

Sometimes, a filter will generate a data set with a new cell set based off the cells of an input data set. For example, a
data set can be significantly altered by adding, removing, or replacing cells.

As with any filter, data set filters can be implemented in classes that derive the vtkm::filter::Filter base class
and implement its vtkm::filter::Filter::DoExecute() method.

In this section we provide an example implementation of a data set filter that wraps the functionality of extract-
ing the edges from a data set as line elements. Many variations of implementing this functionality are given
in Chapter~ref{chap:GeneratingCellSets}. Suffice it to say that a pair of worklets will be used to create a new
vtkm::cont::CellSet, and this vtkm::cont::CellSet will be used to create the result vtkm::cont::DataSet.
Details on how the worklets work are given in Section ref{sec:GeneratingCellSets:SingleType}.

Because the operation of this edge extraction depends only on vtkm::cont::CellSet in a provided
vtkm::cont::DataSet, the filter class is a simple subclass of vtkm::filter::Filter.

Example 5: Header declaration for a data set filter.

1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace entity_extraction
6 {
7

8 class VTKM_FILTER_ENTITY_EXTRACTION_EXPORT ExtractEdges : public vtkm::filter::Filter
9 {

10 public:
11 VTKM_CONT vtkm::cont::DataSet DoExecute(const vtkm::cont::DataSet& inData) override;
12 };
13

14 } // namespace entity_extraction
15 } // namespace filter
16 } // namespace vtkm

The implementation of vtkm::filter::Filter::DoExecute() first gets the vtkm::cont::CellSet and
calls the worklet methods to generate a new vtkm::cont::CellSet class. It then uses a form of
vtkm::filter::Filter::CreateResult() to generate the resulting vtkm::cont::DataSet.

Example 6: Implementation of the
vtkm::filter::Filter::DoExecute() method of a data set
filter.

1 inline VTKM_CONT vtkm::cont::DataSet ExtractEdges::DoExecute(
2 const vtkm::cont::DataSet& inData)
3 {
4 auto inCellSet = inData.GetCellSet();
5

6 // Count number of edges in each cell.
7 vtkm::cont::ArrayHandle<vtkm::IdComponent> edgeCounts;
8 this->Invoke(vtkm::worklet::CountEdgesWorklet{}, inCellSet, edgeCounts);
9

10 // Build the scatter object (for non 1-to-1 mapping of input to output)
11 vtkm::worklet::ScatterCounting scatter(edgeCounts);

(continues on next page)

23.3. Data Set Filters 361

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

12 auto outputToInputCellMap = scatter.GetOutputToInputMap(inCellSet.GetNumberOfCells());
13

14 vtkm::cont::ArrayHandle<vtkm::Id> connectivityArray;
15 this->Invoke(vtkm::worklet::EdgeIndicesWorklet{},
16 scatter,
17 inCellSet,
18 vtkm::cont::make_ArrayHandleGroupVec<2>(connectivityArray));
19

20 vtkm::cont::CellSetSingleType<> outCellSet;
21 outCellSet.Fill(
22 inCellSet.GetNumberOfPoints(), vtkm::CELL_SHAPE_LINE, 2, connectivityArray);
23

24 // This lambda function maps an input field to the output data set. It is
25 // used with the CreateResult method.
26 auto fieldMapper = [&](vtkm::cont::DataSet& outData,
27 const vtkm::cont::Field& inputField) {
28 if (inputField.IsCellField())
29 {
30 vtkm::filter::MapFieldPermutation(inputField, outputToInputCellMap, outData);
31 }
32 else
33 {
34 outData.AddField(inputField); // pass through
35 }
36 };
37

38 return this->CreateResult(inData, outCellSet, fieldMapper);
39 }

The form of vtkm::filter::Filter::CreateResult() used (Example 6, line 38) takes as input a
vtkm::cont::CellSet to use in the generated data. In forms of vtkm::filter::Filter::CreateResult() used
in previous examples of this chapter, the cell structure of the output was created from the cell structure of the input.
Because these cell structures were the same, coordinate systems and fields needed to be changed. However, because we
are providing a new vtkm::cont::CellSet, we need to also specify how the coordinate systems and fields change.

The last two arguments to vtkm::filter::Filter::CreateResult() are providing this information. The second-
to-last argument is a std::vector of the vtkm::cont::CoordinateSystem’s to use. Because this filter does not
actually change the points in the data set, the vtkm::cont::CoordinateSystem’s can just be copied over. The last
argument provides a functor that maps a field from the input to the output. The functor takes two arguments: the output
vtkm::cont::DataSet to modify and the input vtkm::cont::Field to map. In this example, the functor is defined
as a lambda function (Example 6, line 26).

Did You Know?

The field mapper in Example 5 uses a helper function named vtkm::filter::MapFieldPermutation(). In
the case of this example, every cell in the output comes from one cell in the input. For this common case,
the values in the field arrays just need to be permuted so that each input value gets to the right output value.
vtkm::filter::MapFieldPermutation() will do this shuffling for you.

VTK-m also comes with a similar helper function vtkm::filter::MapFieldMergeAverage() that
can be used when each output cell (or point) was constructed from multiple inputs. In this case,
vtkm::filter::MapFieldMergeAverage() can do a simple average for each output value of all input val-
ues that contributed.

362 Chapter 23. Extended Filter Implementations

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

bool vtkm::filter::MapFieldPermutation(const vtkm::cont::Field &inputField, const
vtkm::cont::ArrayHandle<vtkm::Id> &permutation,
vtkm::cont::Field &outputField, vtkm::Float64 invalidValue =
vtkm::Nan<vtkm::Float64>())

Maps a field by permuting it by a given index array.

This method will create a new field containing the data from the provided inputField but reorded by the given
permutation index array. The value in the resulting field for index i will be be a value from inputField, but
comes from the index that comes from permutation at position i. The result is placed in outputField.

The intention of this method is to implement the mapping of fields from the input to the output in filters (many
of which require this permutation of a field), but can be used in other places as well.

outputField is set to have the same metadata as the input. If the metadata needs to change (such as the name
or the association) that should be done after the function returns.

This function returns whether the field was successfully permuted. If the returned result is true, then the results
in outputField are valid. If it is false, then outputField should not be used.

If an invalid index is given in the permutation array (i.e. less than 0 or greater than the size of the array), then
the resulting outputField will be given invalidValue (converted as best as possible to the correct data type).

bool vtkm::filter::MapFieldPermutation(const vtkm::cont::Field &inputField, const
vtkm::cont::ArrayHandle<vtkm::Id> &permutation,
vtkm::cont::DataSet &outputData, vtkm::Float64 invalidValue =
vtkm::Nan<vtkm::Float64>())

Maps a field by permuting it by a given index array.

This method will create a new field containing the data from the provided inputField but reorded by the given
permutation index array. The value in the resulting field for index i will be be a value from inputField, but
comes from the index that comes from permutation at position i.

The intention of this method is to implement the MapFieldOntoOutput methods in filters (many of which
require this permutation of a field), but can be used in other places as well. The resulting field is put in the given
DataSet.

The returned Field has the same metadata as the input. If the metadata needs to change (such as the name or
the association), then a different form of MapFieldPermutation should be used.

This function returns whether the field was successfully permuted. If the returned result is true, then
outputData has the permuted field. If it is false, then the field is not placed in outputData.

If an invalid index is given in the permutation array (i.e. less than 0 or greater than the size of the array), then
the resulting outputField will be given invalidValue (converted as best as possible to the correct data type).

bool vtkm::filter::MapFieldMergeAverage(const vtkm::cont::Field &inputField, const
vtkm::worklet::internal::KeysBase &keys, vtkm::cont::Field
&outputField)

Maps a field by merging entries based on a keys object.

This method will create a new field containing the data from the provided inputField but but with groups of
entities merged together. The input keys object encapsulates which elements should be merged together. A
group of elements merged together will be averaged. The result is placed in outputField.

The intention of this method is to implement the MapFieldOntoOutput methods in filters (many of which
require this merge of a field), but can be used in other places as well.

outputField is set to have the same metadata as the input. If the metadata needs to change (such as the name
or the association) that should be done after the function returns.

23.3. Data Set Filters 363

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

This function returns whether the field was successfully merged. If the returned result is true, then the results
in outputField are valid. If it is false, then outputField should not be used.

bool vtkm::filter::MapFieldMergeAverage(const vtkm::cont::Field &inputField, const
vtkm::worklet::internal::KeysBase &keys, vtkm::cont::DataSet
&outputData)

Maps a field by merging entries based on a keys object.

This method will create a new field containing the data from the provided inputField but but with groups of
entities merged together. The input keys object encapsulates which elements should be merged together. A
group of elements merged together will be averaged.

The intention of this method is to implement the MapFieldOntoOutput methods in filters (many of which
require this merge of a field), but can be used in other places as well. The resulting field is put in the given
DataSet.

The returned Field has the same metadata as the input. If the metadata needs to change (such as the name or
the association), then a different form of MapFieldMergeAverage should be used.

This function returns whether the field was successfully merged. If the returned result is true, then outputData
has the merged field. If it is false, then the field is not placed in outputData.

Did You Know?

Although not the case in this example, sometimes a filter creating a new cell set changes the points of the cells. As long
as the field mapper you provide to vtkm::filter::Filter::CreateResult() properly converts points from the
input to the output, all fields and coordinate systems will be automatically filled in the output. Sometimes when creating
this new cell set you also create new point coordinates for it. This might be because the point coordinates are necessary
for the computation or might be due to a faster way of computing the point coordinates. In either case, if the filter already
has point coordinates computed, it can use vtkm::filter::Filter::CreateResultCoordinateSystem() to use
the precomputed point coordinates.

23.4 Data Set with Field Filters

Sometimes, a filter will generate a data set with a new cell set based off the cells of an input data set along with the data
in at least one field. For example, a field might determine how each cell is culled, clipped, or sliced.

In this section we provide an example implementation of a data set with field filter that blanks the cells in a data set
based on a field that acts as a mask (or stencil). Any cell associated with a mask value of zero will be removed. For
simplicity of this example, we will use the vtkm::filter::entity_extraction::Threshold filter internally for
the implementation.

Example 7: Header declaration for a data set with field filter.

1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace entity_extraction
6 {
7

8 class VTKM_FILTER_ENTITY_EXTRACTION_EXPORT BlankCells : public vtkm::filter::Filter
9 {

10 public:
(continues on next page)

364 Chapter 23. Extended Filter Implementations

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

11 VTKM_CONT vtkm::cont::DataSet DoExecute(const vtkm::cont::DataSet& inDataSet) override;
12 };
13

14

15 } // namespace entity_extraction
16 } // namespace filter
17 } // namespace vtkm

The implementation of vtkm::filter::Filter::DoExecute() first derives an array that contains a flag whether
the input array value is zero or non-zero. This is simply to guarantee the range for the threshold filter. After that a
threshold filter is set up and run to generate the result.

Example 8: Implementation of the
vtkm::filter::Filter::DoExecute() method of a data set
with field filter.

1 VTKM_CONT vtkm::cont::DataSet BlankCells::DoExecute(const vtkm::cont::DataSet& inData)
2 {
3 vtkm::cont::Field inField = this->GetFieldFromDataSet(inData);
4 if (!inField.IsCellField())
5 {
6 throw vtkm::cont::ErrorBadValue("Blanking field must be a cell field.");
7 }
8

9 // Set up this array to have a 0 for any cell to be removed and
10 // a 1 for any cell to keep.
11 vtkm::cont::ArrayHandle<vtkm::FloatDefault> blankingArray;
12

13 auto resolveType = [&](const auto& inFieldArray) {
14 auto transformArray =
15 vtkm::cont::make_ArrayHandleTransform(inFieldArray, vtkm::NotZeroInitialized{});
16 vtkm::cont::ArrayCopyDevice(transformArray, blankingArray);
17 };
18

19 this->CastAndCallScalarField(inField, resolveType);
20

21 // Make a temporary DataSet (shallow copy of the input) to pass blankingArray
22 // to threshold.
23 vtkm::cont::DataSet tempData = inData;
24 tempData.AddCellField("vtkm-blanking-array", blankingArray);
25

26 // Just use the Threshold filter to implement the actual cell removal.
27 vtkm::filter::entity_extraction::Threshold thresholdFilter;
28 thresholdFilter.SetLowerThreshold(0.5);
29 thresholdFilter.SetUpperThreshold(2.0);
30 thresholdFilter.SetActiveField("vtkm-blanking-array",
31 vtkm::cont::Field::Association::Cells);
32

33 // Make sure threshold filter passes all the fields requested, but not the
34 // blanking array.
35 thresholdFilter.SetFieldsToPass(this->GetFieldsToPass());
36 thresholdFilter.SetFieldsToPass("vtkm-blanking-array",

(continues on next page)

23.4. Data Set with Field Filters 365

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

37 vtkm::cont::Field::Association::Cells,
38 vtkm::filter::FieldSelection::Mode::Exclude);
39

40 // Use the threshold filter to generate the actual output.
41 return thresholdFilter.Execute(tempData);
42 }

366 Chapter 23. Extended Filter Implementations

CHAPTER

TWENTYFOUR

WORKLET ERROR HANDLING

It is sometimes the case during the execution of an algorithm that an error condition can occur that causes the com-
putation to become invalid. At such a time, it is important to raise an error to alert the calling code of the problem.
Since VTK-m uses an exception mechanism to raise errors, we want an error in the execution environment to throw an
exception.

However, throwing exceptions in a parallel algorithm is problematic. Some accelerator architectures, like CUDA, do
not even support throwing exceptions. Even on architectures that do support exceptions, throwing them in a thread
block can cause problems. An exception raised in one thread may or may not be thrown in another, which increases
the potential for deadlocks, and it is unclear how uncaught exceptions progress through thread blocks.

VTK-m handles this problem by using a flag and check mechanism. When a worklet (or other subclass of
vtkm::exec::FunctorBase) encounters an error, it can call its vtkm::exec::FunctorBase::RaiseError()
method to flag the problem and record a message for the error. Once all the threads terminate, the scheduler checks for
the error, and if one exists it throws a vtkmcont{ErrorExecution} exception in the control environment. Thus, calling
vtkm::exec::FunctorBase::RaiseError() looks like an exception was thrown from the perspective of the control
environment code that invoked it.

Example 1: Raising an error in the execution environment.

1 struct SquareRoot : vtkm::worklet::WorkletMapField
2 {
3 public:
4 using ControlSignature = void(FieldIn, FieldOut);
5 using ExecutionSignature = _2(_1);
6

7 template<typename T>
8 VTKM_EXEC T operator()(T x) const
9 {

10 if (x < 0)
11 {
12 this->RaiseError("Cannot take the square root of a negative number.");
13 return vtkm::Nan<T>();
14 }
15 return vtkm::Sqrt(x);
16 }
17 };

It is also worth noting that the VTKM_ASSERT macro described in Section 12.2 (Asserting Conditions) also works within
worklets and other code running in the execution environment. Of course, a failed assert will terminate execution rather
than just raise an error so is best for checking invalid conditions for debugging purposes.

367

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

368 Chapter 24. Worklet Error Handling

CHAPTER

TWENTYFIVE

MATH

VTK-m comes with several math functions that tend to be useful for visualization algorithms. The implementation of
basic math operations can vary subtly on different accelerators, and these functions provide cross platform support.

All math functions are located in the vtkm package. The functions are most useful in the execution environment, but
they can also be used in the control environment when needed.

25.1 Basic Math

The vtkm/Math.h header file contains several math functions that replicate the behavior of the basic POSIX math
functions as well as related functionality.

Did You Know?

When writing worklets, you should favor using these math functions provided by VTK-m over the standard math
functions in vtkm/Math.h. VTK-m’s implementation manages several compiling and efficiency issues when porting.

25.1.1 Exponentials

inline vtkm::Float32 vtkm::Exp(vtkm::Float32 x)
Computes e^x, the base-e exponential of x.

inline vtkm::Float64 vtkm::Exp(vtkm::Float64 x)
Computes e^x, the base-e exponential of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Exp(const T &x)

Computes e^x, the base-e exponential of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Exp(const vtkm::Vec<T ,

N> &x)
Computes e^x, the base-e exponential of x.

static inline vtkm::Float32 vtkm::Exp10(vtkm::Float32 x)
Computes 10^x, the base-10 exponential of x.

static inline vtkm::Float64 vtkm::Exp10(vtkm::Float64 x)
Computes 10^x, the base-10 exponential of x.

369

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

template<typename T>
static inline vtkm::Float64 vtkm::Exp10(T x)

Computes 10^x, the base-10 exponential of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Exp10(const vtkm::Vec<T ,

N> &x)
Computes 10^x, the base-10 exponential of x.

inline vtkm::Float32 vtkm::Exp2(vtkm::Float32 x)
Computes 2^x, the base-2 exponential of x.

inline vtkm::Float64 vtkm::Exp2(vtkm::Float64 x)
Computes 2^x, the base-2 exponential of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Exp2(const T &x)

Computes 2^x, the base-2 exponential of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Exp2(const vtkm::Vec<T ,

N> &x)
Computes 2^x, the base-2 exponential of x.

inline vtkm::Float32 vtkm::ExpM1(vtkm::Float32 x)
Computes (e^x) - 1, the of base-e exponental of x then minus 1. The accuracy of this function is good even for
very small values of x.

inline vtkm::Float64 vtkm::ExpM1(vtkm::Float64 x)
Computes (e^x) - 1, the of base-e exponental of x then minus 1. The accuracy of this function is good even for
very small values of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::ExpM1(const T &x)

Computes (e^x) - 1, the of base-e exponental of x then minus 1. The accuracy of this function is good even for
very small values of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::ExpM1(const vtkm::Vec<T ,

N> &x)
Computes (e^x) - 1, the of base-e exponental of x then minus 1. The accuracy of this function is good even for
very small values of x.

inline vtkm::Float32 vtkm::Log(vtkm::Float32 x)
Computes the natural logarithm of x.

inline vtkm::Float64 vtkm::Log(vtkm::Float64 x)
Computes the natural logarithm of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Log(const T &x)

Computes the natural logarithm of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Log(const vtkm::Vec<T ,

N> &x)
Computes the natural logarithm of x.

370 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::Float32 vtkm::Log10(vtkm::Float32 x)
Computes the logarithm base 10 of x.

inline vtkm::Float64 vtkm::Log10(vtkm::Float64 x)
Computes the logarithm base 10 of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Log10(const T &x)

Computes the logarithm base 10 of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Log10(const vtkm::Vec<T ,

N> &x)
Computes the logarithm base 10 of x.

inline vtkm::Float32 vtkm::Log1P(vtkm::Float32 x)
Computes the value of log(1+x). This method is more accurate for very small values of x than the vtkm::Log
function.

inline vtkm::Float64 vtkm::Log1P(vtkm::Float64 x)
Computes the value of log(1+x). This method is more accurate for very small values of x than the vtkm::Log
function.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Log1P(const T &x)

Computes the value of log(1+x). This method is more accurate for very small values of x than the vtkm::Log
function.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Log1P(const vtkm::Vec<T ,

N> &x)
Computes the value of log(1+x). This method is more accurate for very small values of x than the vtkm::Log
function.

inline vtkm::Float32 vtkm::Log2(vtkm::Float32 x)
Computes the logarithm base 2 of x.

inline vtkm::Float64 vtkm::Log2(vtkm::Float64 x)
Computes the logarithm base 2 of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Log2(const T &x)

Computes the logarithm base 2 of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Log2(const vtkm::Vec<T ,

N> &x)
Computes the logarithm base 2 of x.

static inline vtkm::Float32 vtkm::Pow(vtkm::Float32 x, vtkm::Float32 y)
Computes x raised to the power of y.

static inline vtkm::Float64 vtkm::Pow(vtkm::Float64 x, vtkm::Float64 y)
Computes x raised to the power of y.

25.1. Basic Math 371

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

25.1.2 Non-finites

template<typename T>
static inline T vtkm::Infinity()

Returns the representation for infinity. The result is greater than any other number except another infinity or
NaN. When comparing two infinities or infinity to NaN, neither is greater than, less than, nor equal to the other.
The Infinity() function is templated to specify either a 32 or 64 bit floating point number. The convenience
functions Infinity32() andInfinity64() are non-templated versions that return the precision for a particular
precision.

static inline vtkm::Float32 vtkm::Infinity32()
Returns the representation for infinity. The result is greater than any other number except another infinity or
NaN. When comparing two infinities or infinity to NaN, neither is greater than, less than, nor equal to the other.
The Infinity() function is templated to specify either a 32 or 64 bit floating point number. The convenience
functions Infinity32() andInfinity64() are non-templated versions that return the precision for a particular
precision.

static inline vtkm::Float64 vtkm::Infinity64()
Returns the representation for infinity. The result is greater than any other number except another infinity or
NaN. When comparing two infinities or infinity to NaN, neither is greater than, less than, nor equal to the other.
The Infinity() function is templated to specify either a 32 or 64 bit floating point number. The convenience
functions Infinity32() andInfinity64() are non-templated versions that return the precision for a particular
precision.

template<typename T>
static inline bool vtkm::IsFinite(T x)

Returns true if x is a normal number (not NaN or infinite).

template<typename T>
static inline bool vtkm::IsInf(T x)

Returns true if x is positive or negative infinity.

template<typename T>
static inline bool vtkm::IsNan(T x)

Returns true if x is not a number.

static inline bool vtkm::IsNegative(vtkm::Float32 x)
Returns true if x is less than zero, false otherwise.

static inline bool vtkm::IsNegative(vtkm::Float64 x)
Returns true if x is less than zero, false otherwise.

template<typename T>
static inline T vtkm::Nan()

Returns the representation for infinity. The result is greater than any other number except another infinity or NaN.
When comparing two infinities or infinity to NaN, neither is greater than, less than, nor equal to the other. The
Nan() function is templated to specify either a 32 or 64 bit floating point number. The convenience functions
Nan32() and Nan64() are non-templated versions that return the precision for a particular precision.

static inline vtkm::Float32 vtkm::Nan32()
Returns the representation for infinity. The result is greater than any other number except another infinity or NaN.
When comparing two infinities or infinity to NaN, neither is greater than, less than, nor equal to the other. The
Nan() function is templated to specify either a 32 or 64 bit floating point number. The convenience functions
Nan32() and Nan64() are non-templated versions that return the precision for a particular precision.

372 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::Float64 vtkm::Nan64()
Returns the representation for infinity. The result is greater than any other number except another infinity or NaN.
When comparing two infinities or infinity to NaN, neither is greater than, less than, nor equal to the other. The
Nan() function is templated to specify either a 32 or 64 bit floating point number. The convenience functions
Nan32() and Nan64() are non-templated versions that return the precision for a particular precision.

template<typename T>
static inline T vtkm::NegativeInfinity()

Returns the representation for negative infinity. The result is less than any other number except another negative
infinity or NaN. When comparing two negative infinities or negative infinity to NaN, neither is greater than, less
than, nor equal to the other. The NegativeInfinity() function is templated to specify either a 32 or 64 bit
floating point number. The convenience functions NegativeInfinity32() andNegativeInfinity64() are
non-templated versions that return the precision for a particular precision.

static inline vtkm::Float32 vtkm::NegativeInfinity32()
Returns the representation for negative infinity. The result is less than any other number except another negative
infinity or NaN. When comparing two negative infinities or negative infinity to NaN, neither is greater than, less
than, nor equal to the other. The NegativeInfinity() function is templated to specify either a 32 or 64 bit
floating point number. The convenience functions NegativeInfinity32() andNegativeInfinity64() are
non-templated versions that return the precision for a particular precision.

static inline vtkm::Float64 vtkm::NegativeInfinity64()
Returns the representation for negative infinity. The result is less than any other number except another negative
infinity or NaN. When comparing two negative infinities or negative infinity to NaN, neither is greater than, less
than, nor equal to the other. The NegativeInfinity() function is templated to specify either a 32 or 64 bit
floating point number. The convenience functions NegativeInfinity32() andNegativeInfinity64() are
non-templated versions that return the precision for a particular precision.

25.1.3 Polynomials

inline vtkm::Float32 vtkm::Cbrt(vtkm::Float32 x)
Compute the cube root of x.

inline vtkm::Float64 vtkm::Cbrt(vtkm::Float64 x)
Compute the cube root of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Cbrt(const T &x)

Compute the cube root of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Cbrt(const vtkm::Vec<T ,

N> &x)
Compute the cube root of x.

template<typename T>
inline vtkm::Vec<T , 2> vtkm::QuadraticRoots(T a, T b, T c)

Solves ax2 + bx + c = 0.

Only returns the real roots. If there are real roots, the first element of the pair is less than or equal to the second. If
there are no real roots, both elements are NaNs. If VTK-m is compiled with FMA support, each root is accurate
to 3 ulps; otherwise the discriminant is prone to catastrophic subtractive cancellation and no accuracy guarantees
can be provided.

25.1. Basic Math 373

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::Float32 vtkm::RCbrt(vtkm::Float32 x)
Compute the reciprocal cube root of x. The result of this function is equivalent to 1/Cbrt(x). However, on
some devices it is faster to compute the reciprocal cube root than the regular cube root. Thus, you should use
this function whenever dividing by the cube root.

static inline vtkm::Float64 vtkm::RCbrt(vtkm::Float64 x)
Compute the reciprocal cube root of x. The result of this function is equivalent to 1/Cbrt(x). However, on
some devices it is faster to compute the reciprocal cube root than the regular cube root. Thus, you should use
this function whenever dividing by the cube root.

template<typename T>
static inline vtkm::Float64 vtkm::RCbrt(T x)

Compute the reciprocal cube root of x. The result of this function is equivalent to 1/Cbrt(x). However, on
some devices it is faster to compute the reciprocal cube root than the regular cube root. Thus, you should use
this function whenever dividing by the cube root.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::RCbrt(const vtkm::Vec<T ,

N> &x)
Compute the reciprocal cube root of x. The result of this function is equivalent to 1/Cbrt(x). However, on
some devices it is faster to compute the reciprocal cube root than the regular cube root. Thus, you should use
this function whenever dividing by the cube root.

static inline vtkm::Float32 vtkm::RSqrt(vtkm::Float32 x)
Compute the reciprocal square root of x. The result of this function is equivalent to 1/Sqrt(x). However, on
some devices it is faster to compute the reciprocal square root than the regular square root. Thus, you should use
this function whenever dividing by the square root.

static inline vtkm::Float64 vtkm::RSqrt(vtkm::Float64 x)
Compute the reciprocal square root of x. The result of this function is equivalent to 1/Sqrt(x). However, on
some devices it is faster to compute the reciprocal square root than the regular square root. Thus, you should use
this function whenever dividing by the square root.

template<typename T>
static inline vtkm::Float64 vtkm::RSqrt(T x)

Compute the reciprocal square root of x. The result of this function is equivalent to 1/Sqrt(x). However, on
some devices it is faster to compute the reciprocal square root than the regular square root. Thus, you should use
this function whenever dividing by the square root.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::RSqrt(const vtkm::Vec<T ,

N> &x)
Compute the reciprocal square root of x. The result of this function is equivalent to 1/Sqrt(x). However, on
some devices it is faster to compute the reciprocal square root than the regular square root. Thus, you should use
this function whenever dividing by the square root.

inline vtkm::Float32 vtkm::Sqrt(vtkm::Float32 x)
Compute the square root of x. On some hardware it is faster to find the reciprocal square root, so RSqrt should
be used if you actually plan to divide by the square root.

inline vtkm::Float64 vtkm::Sqrt(vtkm::Float64 x)
Compute the square root of x. On some hardware it is faster to find the reciprocal square root, so RSqrt should
be used if you actually plan to divide by the square root.

template<typename T>

374 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline detail::FloatingPointReturnType<T>::Type vtkm::Sqrt(const T &x)
Compute the square root of x. On some hardware it is faster to find the reciprocal square root, so RSqrt should
be used if you actually plan to divide by the square root.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Sqrt(const vtkm::Vec<T ,

N> &x)
Compute the square root of x. On some hardware it is faster to find the reciprocal square root, so RSqrt should
be used if you actually plan to divide by the square root.

25.1.4 Remainders and Quotient

static inline vtkm::Float32 vtkm::ModF(vtkm::Float32 x, vtkm::Float32 &integral)
Gets the integral and fractional parts of x. The return value is the fractional part and integral is set to the
integral part.

static inline vtkm::Float64 vtkm::ModF(vtkm::Float64 x, vtkm::Float64 &integral)
Gets the integral and fractional parts of x. The return value is the fractional part and integral is set to the
integral part.

static inline vtkm::Float32 vtkm::Remainder(vtkm::Float32 x, vtkm::Float32 y)
Computes the remainder on division of 2 floating point numbers. The return value is numerator - n
denominator, where n is the quotient of numerator divided by denominator rounded towards the nearest
integer (instead of toward zero like FMod). For example, FMod(6.5, 2.3) returns -0.4, which is 6.5 - 3*2.3.

static inline vtkm::Float64 vtkm::Remainder(vtkm::Float64 x, vtkm::Float64 y)
Computes the remainder on division of 2 floating point numbers. The return value is numerator - n
denominator, where n is the quotient of numerator divided by denominator rounded towards the nearest
integer (instead of toward zero like FMod). For example, FMod(6.5, 2.3) returns -0.4, which is 6.5 - 3*2.3.

template<typename QType>
static inline vtkm::Float32 vtkm::RemainderQuotient(vtkm::Float32 numerator, vtkm::Float32 denominator,

QType "ient)
Returns the remainder on division of 2 floating point numbers just like Remainder. In addition, this function also
returns the quotient used to get that remainder.

template<typename QType>
static inline vtkm::Float64 vtkm::RemainderQuotient(vtkm::Float64 numerator, vtkm::Float64 denominator,

QType "ient)
Returns the remainder on division of 2 floating point numbers just like Remainder. In addition, this function also
returns the quotient used to get that remainder.

25.1.5 Rounding and Precision

inline vtkm::Float32 vtkm::Ceil(vtkm::Float32 x)
Round x to the smallest integer value not less than x.

inline vtkm::Float64 vtkm::Ceil(vtkm::Float64 x)
Round x to the smallest integer value not less than x.

template<typename T>

25.1. Basic Math 375

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline detail::FloatingPointReturnType<T>::Type vtkm::Ceil(const T &x)
Round x to the smallest integer value not less than x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Ceil(const vtkm::Vec<T ,

N> &x)
Round x to the smallest integer value not less than x.

static inline vtkm::Float32 vtkm::CopySign(vtkm::Float32 x, vtkm::Float32 y)
Copies the sign of y onto x. If y is positive, returns Abs(x). If y is negative, returns -Abs(x).

static inline vtkm::Float64 vtkm::CopySign(vtkm::Float64 x, vtkm::Float64 y)
Copies the sign of y onto x. If y is positive, returns Abs(x). If y is negative, returns -Abs(x).

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<T , N> vtkm::CopySign(const vtkm::Vec<T , N> &x, const vtkm::Vec<T , N> &y)

Copies the sign of y onto x. If y is positive, returns Abs(x). If y is negative, returns -Abs(x).

template<typename T>
static inline T vtkm::Epsilon()

Returns the difference between 1 and the least value greater than 1 that is representable by a floating point num-
ber. Epsilon is useful for specifying the tolerance one should have when considering numerical error. The
Epsilon() function is templated to specify either a 32 or 64 bit floating point number. The convenience func-
tions Epsilon32() andEpsilon64() are non-templated versions that return the precision for a particular pre-
cision.

static inline vtkm::Float32 vtkm::Epsilon32()
Returns the difference between 1 and the least value greater than 1 that is representable by a floating point num-
ber. Epsilon is useful for specifying the tolerance one should have when considering numerical error. The
Epsilon() function is templated to specify either a 32 or 64 bit floating point number. The convenience func-
tions Epsilon32() andEpsilon64() are non-templated versions that return the precision for a particular pre-
cision.

static inline vtkm::Float64 vtkm::Epsilon64()
Returns the difference between 1 and the least value greater than 1 that is representable by a floating point num-
ber. Epsilon is useful for specifying the tolerance one should have when considering numerical error. The
Epsilon() function is templated to specify either a 32 or 64 bit floating point number. The convenience func-
tions Epsilon32() andEpsilon64() are non-templated versions that return the precision for a particular pre-
cision.

static inline vtkm::Float32 vtkm::FMod(vtkm::Float32 x, vtkm::Float32 y)
Computes the remainder on division of 2 floating point numbers. The return value is numerator - n
denominator, where n is the quotient of numerator divided by denominator rounded towards zero to an
integer. For example, FMod(6.5, 2.3) returns 1.9, which is 6.5 - 2*2.3.

static inline vtkm::Float64 vtkm::FMod(vtkm::Float64 x, vtkm::Float64 y)
Computes the remainder on division of 2 floating point numbers. The return value is numerator - n
denominator, where n is the quotient of numerator divided by denominator rounded towards zero to an
integer. For example, FMod(6.5, 2.3) returns 1.9, which is 6.5 - 2*2.3.

inline vtkm::Float32 vtkm::Round(vtkm::Float32 x)
Round x to the nearest integral value.

inline vtkm::Float64 vtkm::Round(vtkm::Float64 x)
Round x to the nearest integral value.

template<typename T>

376 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline detail::FloatingPointReturnType<T>::Type vtkm::Round(const T &x)
Round x to the nearest integral value.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Round(const vtkm::Vec<T ,

N> &x)
Round x to the nearest integral value.

25.1.6 Sign

static inline vtkm::Int32 vtkm::Abs(vtkm::Int32 x)
Return the absolute value of x. That is, return x if it is positive or -x if it is negative.

static inline vtkm::Int64 vtkm::Abs(vtkm::Int64 x)
Return the absolute value of x. That is, return x if it is positive or -x if it is negative.

static inline vtkm::Float32 vtkm::Abs(vtkm::Float32 x)
Return the absolute value of x. That is, return x if it is positive or -x if it is negative.

static inline vtkm::Float64 vtkm::Abs(vtkm::Float64 x)
Return the absolute value of x. That is, return x if it is positive or -x if it is negative.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Abs(T x)

Return the absolute value of x. That is, return x if it is positive or -x if it is negative.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<T , N> vtkm::Abs(const vtkm::Vec<T , N> &x)

Return the absolute value of x. That is, return x if it is positive or -x if it is negative.

inline vtkm::Float32 vtkm::Floor(vtkm::Float32 x)
Round x to the largest integer value not greater than x.

inline vtkm::Float64 vtkm::Floor(vtkm::Float64 x)
Round x to the largest integer value not greater than x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Floor(const T &x)

Round x to the largest integer value not greater than x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Floor(const vtkm::Vec<T ,

N> &x)
Round x to the largest integer value not greater than x.

static inline vtkm::Int32 vtkm::SignBit(vtkm::Float32 x)
Returns a nonzero value if x is negative.

static inline vtkm::Int32 vtkm::SignBit(vtkm::Float64 x)
Returns a nonzero value if x is negative.

25.1. Basic Math 377

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

25.1.7 Trigonometry

inline vtkm::Float32 vtkm::ACos(vtkm::Float32 x)
Compute the arc cosine of x.

inline vtkm::Float64 vtkm::ACos(vtkm::Float64 x)
Compute the arc cosine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::ACos(const T &x)

Compute the arc cosine of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::ACos(const vtkm::Vec<T ,

N> &x)
Compute the arc cosine of x.

inline vtkm::Float32 vtkm::ACosH(vtkm::Float32 x)
Compute the hyperbolic arc cosine of x.

inline vtkm::Float64 vtkm::ACosH(vtkm::Float64 x)
Compute the hyperbolic arc cosine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::ACosH(const T &x)

Compute the hyperbolic arc cosine of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::ACosH(const vtkm::Vec<T ,

N> &x)
Compute the hyperbolic arc cosine of x.

inline vtkm::Float32 vtkm::ASin(vtkm::Float32 x)
Compute the arc sine of x.

inline vtkm::Float64 vtkm::ASin(vtkm::Float64 x)
Compute the arc sine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::ASin(const T &x)

Compute the arc sine of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::ASin(const vtkm::Vec<T ,

N> &x)
Compute the arc sine of x.

inline vtkm::Float32 vtkm::ASinH(vtkm::Float32 x)
Compute the hyperbolic arc sine of x.

inline vtkm::Float64 vtkm::ASinH(vtkm::Float64 x)
Compute the hyperbolic arc sine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::ASinH(const T &x)

Compute the hyperbolic arc sine of x.

template<typename T, vtkm::IdComponent N>

378 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::ASinH(const vtkm::Vec<T ,
N> &x)

Compute the hyperbolic arc sine of x.

inline vtkm::Float32 vtkm::ATan(vtkm::Float32 x)
Compute the arc tangent of x.

inline vtkm::Float64 vtkm::ATan(vtkm::Float64 x)
Compute the arc tangent of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::ATan(const T &x)

Compute the arc tangent of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::ATan(const vtkm::Vec<T ,

N> &x)
Compute the arc tangent of x.

static inline vtkm::Float32 vtkm::ATan2(vtkm::Float32 x, vtkm::Float32 y)
Compute the arc tangent of x / y using the signs of both arguments to determine the quadrant of the return value.

static inline vtkm::Float64 vtkm::ATan2(vtkm::Float64 x, vtkm::Float64 y)
Compute the arc tangent of x / y using the signs of both arguments to determine the quadrant of the return value.

inline vtkm::Float32 vtkm::ATanH(vtkm::Float32 x)
Compute the hyperbolic arc tangent of x.

inline vtkm::Float64 vtkm::ATanH(vtkm::Float64 x)
Compute the hyperbolic arc tangent of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::ATanH(const T &x)

Compute the hyperbolic arc tangent of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::ATanH(const vtkm::Vec<T ,

N> &x)
Compute the hyperbolic arc tangent of x.

inline vtkm::Float32 vtkm::Cos(vtkm::Float32 x)
Compute the cosine of x.

inline vtkm::Float64 vtkm::Cos(vtkm::Float64 x)
Compute the cosine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Cos(const T &x)

Compute the cosine of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Cos(const vtkm::Vec<T ,

N> &x)
Compute the cosine of x.

inline vtkm::Float32 vtkm::CosH(vtkm::Float32 x)
Compute the hyperbolic cosine of x.

25.1. Basic Math 379

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::Float64 vtkm::CosH(vtkm::Float64 x)
Compute the hyperbolic cosine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::CosH(const T &x)

Compute the hyperbolic cosine of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::CosH(const vtkm::Vec<T ,

N> &x)
Compute the hyperbolic cosine of x.

template<typename T = vtkm::Float64>
static inline constexpr detail::FloatingPointReturnType<T>::Type vtkm::Pi()

Returns the constant Pi.

template<typename T = vtkm::Float64>
static inline constexpr detail::FloatingPointReturnType<T>::Type vtkm::Pi_2()

Returns the constant Pi halves.

template<typename T = vtkm::Float64>
static inline constexpr detail::FloatingPointReturnType<T>::Type vtkm::Pi_3()

Returns the constant Pi thirds.

template<typename T = vtkm::Float64>
static inline constexpr detail::FloatingPointReturnType<T>::Type vtkm::Pi_4()

Returns the constant Pi fourths.

template<typename T = vtkm::Float64>
static inline constexpr detail::FloatingPointReturnType<T>::Type vtkm::Pi_180()

Returns the constant Pi one hundred and eightieth.

inline vtkm::Float32 vtkm::Sin(vtkm::Float32 x)
Compute the sine of x.

inline vtkm::Float64 vtkm::Sin(vtkm::Float64 x)
Compute the sine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Sin(const T &x)

Compute the sine of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Sin(const vtkm::Vec<T ,

N> &x)
Compute the sine of x.

inline vtkm::Float32 vtkm::SinH(vtkm::Float32 x)
Compute the hyperbolic sine of x.

inline vtkm::Float64 vtkm::SinH(vtkm::Float64 x)
Compute the hyperbolic sine of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::SinH(const T &x)

Compute the hyperbolic sine of x.

template<typename T, vtkm::IdComponent N>

380 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::SinH(const vtkm::Vec<T ,
N> &x)

Compute the hyperbolic sine of x.

inline vtkm::Float32 vtkm::Tan(vtkm::Float32 x)
Compute the tangent of x.

inline vtkm::Float64 vtkm::Tan(vtkm::Float64 x)
Compute the tangent of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::Tan(const T &x)

Compute the tangent of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::Tan(const vtkm::Vec<T ,

N> &x)
Compute the tangent of x.

inline vtkm::Float32 vtkm::TanH(vtkm::Float32 x)
Compute the hyperbolic tangent of x.

inline vtkm::Float64 vtkm::TanH(vtkm::Float64 x)
Compute the hyperbolic tangent of x.

template<typename T>
static inline detail::FloatingPointReturnType<T>::Type vtkm::TanH(const T &x)

Compute the hyperbolic tangent of x.

template<typename T, vtkm::IdComponent N>
static inline vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, N> vtkm::TanH(const vtkm::Vec<T ,

N> &x)
Compute the hyperbolic tangent of x.

template<typename T = vtkm::Float64>
static inline constexpr detail::FloatingPointReturnType<T>::Type vtkm::TwoPi()

Returns the constant 2 times Pi.

25.1.8 Miscellaneous

inline vtkm::UInt64 vtkm::FloatDistance(vtkm::Float64 x, vtkm::Float64 y)
Computes the number of representables between two floating point numbers.

This function is non-negative and symmetric in its arguments. If either argument is non-finite, the value returned
is the maximum value allowed by 64-bit unsigned integers: 2^64-1.

inline vtkm::UInt64 vtkm::FloatDistance(vtkm::Float32 x, vtkm::Float32 y)
Computes the number of representables between two floating point numbers.

This function is non-negative and symmetric in its arguments. If either argument is non-finite, the value returned
is the maximum value allowed by 64-bit unsigned integers: 2^64-1.

template<typename T>
static inline T vtkm::Max(const T &x, const T &y)

Returns x or y, whichever is larger.

Returns x or y, whichever is larger.

25.1. Basic Math 381

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

template<typename T>
static inline T vtkm::Min(const T &x, const T &y)

Returns x or y, whichever is smaller.

Returns x or y, whichever is smaller.

25.2 Vector Analysis

Visualization and computational geometry algorithms often perform vector analysis operations. The vtkm/
VectorAnalysis.h header file provides functions that perform the basic common vector analysis operations.

template<typename T>
vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, 3> vtkm::Cross(const vtkm::Vec<T , 3> &x,

const vtkm::Vec<T , 3> &y)
Find the cross product of two vectors.

If VTK-m is compiled with FMA support, it uses Kahan’s difference of products algorithm to achieve a maximum
error of 1.5 ulps in each component.

template<typename ValueType, typename WeightType>
inline ValueType vtkm::Lerp(const ValueType &value0, const ValueType &value1, const WeightType &weight)

Returns the linear interpolation of two values based on weight.

Lerp returns the linear interpolation of two values based on a weight. If weight is outside [0,1] then Lerp
extrapolates. If weight=0 then value0 is returned. If weight=1 then value1 is returned.

template<typename T>
detail::FloatingPointReturnType<T>::Type vtkm::Magnitude(const T &x)

Returns the magnitude of a vector.

It is usually much faster to compute MagnitudeSquared, so that should be substituted when possible (unless you
are just going to take the square root, which would be besides the point). On some hardware it is also faster to
find the reciprocal magnitude, so RMagnitude should be used if you actually plan to divide by the magnitude.

template<typename T>
detail::FloatingPointReturnType<T>::Type vtkm::MagnitudeSquared(const T &x)

Returns the square of the magnitude of a vector.

It is usually much faster to compute the square of the magnitude than the magnitude, so you should use this
function in place of Magnitude or RMagnitude when possible.

template<typename T>
T vtkm::Normal(const T &x)

Returns a normalized version of the given vector.

The resulting vector points in the same direction but has unit length.

template<typename T>
void vtkm::Normalize(T &x)

Changes a vector to be normal.

The given vector is scaled to be unit length.

template<typename T, int N>
int vtkm::Orthonormalize(const vtkm::Vec<vtkm::Vec<T , N>, N> &inputs, vtkm::Vec<vtkm::Vec<T , N>, N>

&outputs, T tol = static_cast<T>(1e-6))

382 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Convert a set of vectors to an orthonormal basis.

This function performs Gram-Schmidt orthonormalization for 3-D vectors. The first output vector will always
be parallel to the first input vector. The remaining output vectors will be orthogonal and unit length and have the
same handedness as their corresponding input vectors.

This method is geometric. It does not require a matrix solver. However, unlike the algebraic eigensolver tech-
niques which do use matrix inversion, this method may return zero-length output vectors if some input vectors
are collinear. The number of non-zero (to within the specified tolerance, tol) output vectors is the return value.

See https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process for details.

template<typename T, int N>
vtkm::Vec<T , N> vtkm::Project(const vtkm::Vec<T , N> &v, const vtkm::Vec<T , N> &u)

Project a vector onto another vector.

This method computes the orthogonal projection of the vector v onto u; that is, it projects its first argument onto
its second.

Note that if the vector u has zero length, the output vector will have all its entries equal to NaN.

template<typename T, int N>
T vtkm::ProjectedDistance(const vtkm::Vec<T , N> &v, const vtkm::Vec<T , N> &u)

Project a vector onto another vector, returning only the projected distance.

This method computes the orthogonal projection of the vector v onto u; that is, it projects its first argument onto
its second.

Note that if the vector u has zero length, the output will be NaN.

template<typename T>
detail::FloatingPointReturnType<T>::Type vtkm::RMagnitude(const T &x)

Returns the reciprocal magnitude of a vector.

On some hardware RMagnitude is faster than Magnitude, but neither is as fast as MagnitudeSquared. This
function works on scalars as well as vectors, in which case it just returns the reciprocal of the scalar.

template<typename T>
vtkm::Vec<typename detail::FloatingPointReturnType<T>::Type, 3> vtkm::TriangleNormal(const vtkm::Vec<T ,

3> &a, const
vtkm::Vec<T , 3>
&b, const
vtkm::Vec<T , 3>
&c)

Find the normal of a triangle.

Given three coordinates in space, which, unless degenerate, uniquely define a triangle and the plane the triangle
is on, returns a vector perpendicular to that triangle/plane.

Note that the returned vector might not be a unit vector. In fact, the length is equal to twice the area of the triangle.
If you want a unit vector, send the result through the vtkm::Normal() or vtkm::Normalize() function.

25.2. Vector Analysis 383

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

25.3 Matrices

Linear algebra operations on small matrices that are done on a single thread are located in vtkm/Matrix.h.

This header defines the vtkm::Matrix templated class. The template parameters are first the type of component, then
the number of rows, then the number of columns. The overloaded parentheses operator can be used to retrieve values
based on row and column indices. Likewise, the bracket operators can be used to reference the vtkm::Matrix as a
2D array (indexed by row first).

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol>

class Matrix
Basic Matrix type.

The Matrix class holds a small two dimensional array for simple linear algebra and vector operations. VTK-m
provides several Matrix-based operations to assist in visualization computations.

A Matrix is not intended to hold very large arrays. Rather, they are a per-thread data structure to hold information
like geometric transforms and tensors.

Public Functions

inline Matrix()
Creates an uninitialized matrix. The values in the matrix are not determined.

inline explicit Matrix(const ComponentType &value)
Creates a matrix initialized with all values set to the provided value.

inline const vtkm::Vec<ComponentType, NUM_COLUMNS> &operator[](vtkm::IdComponent rowIndex)
const

Brackets are used to reference a matrix like a 2D array (i.e.

matrix[row][column]).

inline vtkm::Vec<ComponentType, NUM_COLUMNS> &operator[](vtkm::IdComponent rowIndex)
Brackets are used to referens a matrix like a 2D array i.e.

matrix[row][column].

inline const ComponentType &operator()(vtkm::IdComponent rowIndex, vtkm::IdComponent colIndex)
const

Parentheses are used to reference a matrix using mathematical tuple notation i.e.

matrix(row,column).

inline ComponentType &operator()(vtkm::IdComponent rowIndex, vtkm::IdComponent colIndex)
Parentheses are used to reference a matrix using mathematical tuple notation i.e.

matrix(row,column).

The following example builds a vtkm::Matrix that contains the values⃒⃒⃒⃒
0 1 2
10 11 12

⃒⃒⃒⃒

384 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Example 1: Creating a vtkm::Matrix.

1 vtkm::Matrix<vtkm::Float32, 2, 3> matrix;
2

3 // Using parenthesis notation.
4 matrix(0, 0) = 0.0f;
5 matrix(0, 1) = 1.0f;
6 matrix(0, 2) = 2.0f;
7

8 // Using bracket notation.
9 matrix[1][0] = 10.0f;

10 matrix[1][1] = 11.0f;
11 matrix[1][2] = 12.0f;

The vtkm/Matrix.h header also defines the following functions that operate on matrices.

template<typename T, vtkm::IdComponent Size>
T vtkm::MatrixDeterminant(const vtkm::Matrix<T , Size, Size> &A)

Compute the determinant of a matrix.

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol>
vtkm::Vec<T , NumRow> vtkm::MatrixGetColumn(const vtkm::Matrix<T , NumRow, NumCol> &matrix,

vtkm::IdComponent columnIndex)
Returns a tuple containing the given column (indexed from 0) of the given matrix.

Might not be as efficient as the MatrixGetRow() function.

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol>
const vtkm::Vec<T , NumCol> &vtkm::MatrixGetRow(const vtkm::Matrix<T , NumRow, NumCol> &matrix,

vtkm::IdComponent rowIndex)
Returns a tuple containing the given row (indexed from 0) of the given matrix.

template<typename T, vtkm::IdComponent Size>
vtkm::Matrix<T , Size, Size> vtkm::MatrixIdentity()

Returns the identity matrix.

template<typename T, vtkm::IdComponent Size>
void vtkm::MatrixIdentity(vtkm::Matrix<T , Size, Size> &matrix)

Fills the given matrix with the identity matrix.

template<typename T, vtkm::IdComponent Size>
vtkm::Matrix<T , Size, Size> vtkm::MatrixInverse(const vtkm::Matrix<T , Size, Size> &A, bool &valid)

Find and return the inverse of the given matrix.

If the matrix is singular, the inverse will not be correct and valid will be set to false.

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol, vtkm::IdComponent
NumInternal>
vtkm::Matrix<T , NumRow, NumCol> vtkm::MatrixMultiply(const vtkm::Matrix<T , NumRow, NumInternal>

&leftFactor, const vtkm::Matrix<T , NumInternal,
NumCol> &rightFactor)

Standard matrix multiplication.

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol>
vtkm::Vec<T , NumRow> vtkm::MatrixMultiply(const vtkm::Matrix<T , NumRow, NumCol> &leftFactor, const

vtkm::Vec<T , NumCol> &rightFactor)
Standard matrix-vector multiplication.

25.3. Matrices 385

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol>
vtkm::Vec<T , NumCol> vtkm::MatrixMultiply(const vtkm::Vec<T , NumRow> &leftFactor, const

vtkm::Matrix<T , NumRow, NumCol> &rightFactor)
Standard vector-matrix multiplication.

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol>
void vtkm::MatrixSetColumn(vtkm::Matrix<T , NumRow, NumCol> &matrix, vtkm::IdComponent columnIndex,

const vtkm::Vec<T , NumRow> &columnValues)
Convenience function for setting a column of a matrix.

template<typename T, vtkm::IdComponent NumRow, vtkm::IdComponent NumCol>
void vtkm::MatrixSetRow(vtkm::Matrix<T , NumRow, NumCol> &matrix, vtkm::IdComponent rowIndex, const

vtkm::Vec<T , NumCol> &rowValues)
Convenience function for setting a row of a matrix.

template<typename T, vtkm::IdComponent NumRows, vtkm::IdComponent NumCols>
vtkm::Matrix<T , NumCols, NumRows> vtkm::MatrixTranspose(const vtkm::Matrix<T , NumRows, NumCols>

&matrix)
Returns the transpose of the given matrix.

template<typename T, vtkm::IdComponent Size>
vtkm::Vec<T , Size> vtkm::SolveLinearSystem(const vtkm::Matrix<T , Size, Size> &A, const vtkm::Vec<T ,

Size> &b, bool &valid)
Solve the linear system Ax = b for x.

If a single solution is found, valid is set to true, false otherwise.

25.4 Newton’s Method

VTK-m’s matrix methods (documented in Section 25.3 (Matrices)) provide a method to solve a small linear system of
equations. However, sometimes it is necessary to solve a small nonlinear system of equations. This can be done with
the vtkm::NewtonsMethod() function defined in the vtkm/NewtonsMethod.h header.

The vtkm::NewtonsMethod() function assumes that the number of variables equals the number of equations. New-
ton’s method operates on an iterative evaluate and search. Evaluations are performed using the functors passed into the
vtkm::NewtonsMethod().

template<typename ScalarType, vtkm::IdComponent Size, typename JacobianFunctor, typename
FunctionFunctor>
NewtonsMethodResult<ScalarType, Size> vtkm::NewtonsMethod(JacobianFunctor jacobianEvaluator,

FunctionFunctor functionEvaluator,
vtkm::Vec<ScalarType, Size>
desiredFunctionOutput, vtkm::Vec<ScalarType,
Size> initialGuess = vtkm::Vec<ScalarType,
Size>(ScalarType(0)), ScalarType
convergeDifference = ScalarType(1e-3),
vtkm::IdComponent maxIterations = 10)

Uses Newton’s method (a.k.a.

Newton-Raphson method) to solve a nonlinear system of equations. This function assumes that the number
of variables equals the number of equations. Newton’s method operates on an iterative evaluate and search.
Evaluations are performed using the functors passed into the NewtonsMethod. The first functor returns the NxN
matrix of the Jacobian at a given input point. The second functor returns the N tuple that is the function evaluation
at the given input point. The input point that evaluates to the desired output, or the closest point found, is returned.

386 Chapter 25. Math

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Parameters

• jacobianEvaluator – [in] A functor whose operation takes a vtkm::Vec and returns a
vtkm::Matrix containing the math function’s Jacobian vector at that point.

• functionEvaluator – [in] A functor whose operation takes a vtkm::Vec and returns the
evaluation of the math function at that point as another vtkm::Vec.

• desiredFunctionOutput – [in] The desired output of the function.

• initialGuess – [in] The initial guess to search from. If not specified, the origin is used.

• convergeDifference – [in] The convergence distance. If the iterative method changes all
values less than this amount. Once all values change less, it considers the solution found. If
not specified, set to 0.001.

• maxIterations – [in] The maximum amount of iterations to run before giving up and
returning the best solution found. If not specified, set to 10.

Returns
A vtkm::NewtonsMethodResult containing the best found result and state about its validity.

The vtkm::NewtonsMethod() function returns a vtkm{NewtonsMethodResult} object. textidenti-
fier{NewtonsMethodResult} is a textcode{struct} templated on the type and number of input values of the
nonlinear system. textidentifier{NewtonsMethodResult} contains the following items.

template<typename ScalarType, vtkm::IdComponent Size>

struct NewtonsMethodResult
An object returned from NewtonsMethod() that contains the result and other information about the final state.

Public Members

bool Valid
True if Newton’s method ran into a singularity.

bool Converged
True if Newton’s method converted to below the convergence value.

vtkm::Vec<ScalarType, Size> Solution
The solution found by Newton’s method.

If Converged is false, then this value is likely inaccurate. If Valid is false, then this value is undefined.

Example 2: Using vtkm::NewtonsMethod() to solve a small system of
nonlinear equations.

1 // A functor for the mathematical function f(x) = [dot(x,x),x[0]*x[1]]
2 struct FunctionFunctor
3 {
4 template<typename T>
5 VTKM_EXEC_CONT vtkm::Vec<T, 2> operator()(const vtkm::Vec<T, 2>& x) const
6 {
7 return vtkm::make_Vec(vtkm::Dot(x, x), x[0] * x[1]);
8 }
9 };

(continues on next page)

25.4. Newton’s Method 387

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

10

11 // A functor for the Jacobian of the mathematical function
12 // f(x) = [dot(x,x),x[0]*x[1]], which is
13 // | 2*x[0] 2*x[1] |
14 // | x[1] x[0] |
15 struct JacobianFunctor
16 {
17 template<typename T>
18 VTKM_EXEC_CONT vtkm::Matrix<T, 2, 2> operator()(const vtkm::Vec<T, 2>& x) const
19 {
20 vtkm::Matrix<T, 2, 2> jacobian;
21 jacobian(0, 0) = 2 * x[0];
22 jacobian(0, 1) = 2 * x[1];
23 jacobian(1, 0) = x[1];
24 jacobian(1, 1) = x[0];
25

26 return jacobian;
27 }
28 };
29

30 VTKM_EXEC
31 void SolveNonlinear()
32 {
33 // Use Newton's method to solve the nonlinear system of equations:
34 //
35 // x^2 + y^2 = 2
36 // x*y = 1
37 //
38 // There are two possible solutions, which are (x=1,y=1) and (x=-1,y=-1).
39 // The one found depends on the starting value.
40 vtkm::NewtonsMethodResult<vtkm::Float32, 2> answer1 =
41 vtkm::NewtonsMethod(JacobianFunctor(),
42 FunctionFunctor(),
43 vtkm::make_Vec(2.0f, 1.0f),
44 vtkm::make_Vec(1.0f, 0.0f));
45 if (!answer1.Valid || !answer1.Converged)
46 {
47 // Failed to find solution
48 }
49 // answer1.Solution is [1,1]
50

51 vtkm::NewtonsMethodResult<vtkm::Float32, 2> answer2 =
52 vtkm::NewtonsMethod(JacobianFunctor(),
53 FunctionFunctor(),
54 vtkm::make_Vec(2.0f, 1.0f),
55 vtkm::make_Vec(0.0f, -2.0f));
56 if (!answer2.Valid || !answer2.Converged)
57 {
58 // Failed to find solution
59 }
60 // answer2 is [-1,-1]
61 }

388 Chapter 25. Math

CHAPTER

TWENTYSIX

WORKING WITH CELLS

In the control environment, data is defined in mesh structures that comprise a set of finite cells. (See Section 7.2
(Cell Sets) for information on defining cell sets in the control environment.) When worklets that operate on cells are
scheduled, these grid structures are broken into their independent cells, and that data is handed to the worklet. Thus,
cell-based operations in the execution environment exclusively operate on independent cells.

Unlike some other libraries such as VTK, VTK-m does not have a cell class that holds all the information pertaining
to a cell of a particular type. Instead, VTK-m provides tags or identifiers defining the cell shape, and companion data
like coordinate and field information are held in separate structures. This organization is designed so a worklet may
specify exactly what information it needs, and only that information will be loaded.

26.1 Cell Shape Tags and Ids

Cell shapes can be specified with either a tag (defined with a struct with a name like CellShapeTag*) or an enumerated
identifier (defined with a constant number with a name like CELL_SHAPE_*). These shape tags and identifiers are
defined in vtkm/CellShape.h and declared in the vtkm namespace (because they can be used in either the control or
the execution environment). Figure 1 gives both the identifier and the tag names.

struct CellShapeTagVertex

enumerator CELL_SHAPE_VERTEX
Vertex cells of a single point.

struct CellShapeTagLine

enumerator CELL_SHAPE_LINE
A line cell connecting two points.

struct CellShapeTagPolyLine

enumerator CELL_SHAPE_POLY_LINE
A sequence of line segments.

A polyline has 2 or more points, and the points are connected in order by line segments forming a piecewise
linear curve.

struct CellShapeTagTriangle

389

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Figure 1: Basic Cell Shapes.

390 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator CELL_SHAPE_TRIANGLE
A triangle.

struct CellShapeTagPolygon

enumerator CELL_SHAPE_POLYGON
A general polygon shape.

All polygons have points ordered in counterclockwise order around the front side. Some operations may be
invalid if the polygon is not a convex shape.

struct CellShapeTagQuad

enumerator CELL_SHAPE_QUAD
A four-sided polygon.

struct CellShapeTagTetra

enumerator CELL_SHAPE_TETRA
A tetrahedron.

A tetrahedron is a 3D polyhedron with 4 points and 4 triangular faces.

struct CellShapeTagHexahedron

enumerator CELL_SHAPE_HEXAHEDRON
A hexahedron.

struct CellShapeTagWedge

enumerator CELL_SHAPE_WEDGE
A wedge.

Wedges are simple prisms that can be formed by extruding a triangle. They have 2 triangular faces and 3 quadri-
lateral faces.

struct CellShapeTagPyramid

enumerator CELL_SHAPE_PYRAMID
A pyramid with a quadrilateral base and four triangular faces.0.

In addition to the basic cell shapes, there is a special “empty” cell with the identifier vtkm::CELL_SHAPE_EMPTY and
tag vtkm::CellShapeTagEmpty. This type of cell has no points, edges, or faces and can be thought of as a placeholder
for a null or void cell.

struct CellShapeTagEmpty

26.1. Cell Shape Tags and Ids 391

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

enumerator CELL_SHAPE_EMPTY
Placeholder for empty or invalid cells.

There is also a special cell shape “tag” named vtkm::CellShapeTagGeneric that is used when the actual cell
shape is not known at compile time. vtkm::CellShapeTagGeneric actually has a member variable named
vtkm::CellShapeTagGeneric::Id that stores the identifier for the cell shape. There is no equivalent identifier
for a generic cell; cell shape identifiers can be placed in a vtkm::IdComponent at runtime.

struct CellShapeTagGeneric
A special cell shape tag that holds a cell shape that is not known at compile time.

Unlike other cell set tags, the Id field is set at runtime so its value cannot be used in template parameters. You
need to use vtkmGenericCellShapeMacro to specialize on the cell type.

Public Members

vtkm::UInt8 Id
An identifier that corresponds to one of the CELL_SHAPE_* identifiers.

This value is used to detect the proper shape at runtime.

When using cell shapes in templated classes and functions, you can use the VTKM_IS_CELL_SHAPE_TAG to ensure a
type is a valid cell shape tag. This macro takes one argument and will produce a compile error if the argument is not a
cell shape tag type.

VTKM_IS_CELL_SHAPE_TAG(tag)
Checks that the argument is a proper cell shape tag.

This is a handy concept check to make sure that a template argument is a proper cell shape tag.

26.1.1 Converting Between Tags and Identifiers

Every cell shape tag has a member variable named Id that contains the identifier for the cell shape. This provides a
convenient mechanism for converting a cell shape tag to an identifier. Most cell shape tags have their Id member as a
compile-time constant, but vtkm::CellShapeTagGeneric::Id is set at run time.

The vtkm/CellShape.h header also declares a templated class named vtkm::CellShapeIdToTag that converts a
cell shape identifier to a cell shape tag. vtkm::CellShapeIdToTag has a single template argument that is the identifier.
Inside the class is a type named vtkm::CellShapeIdToTag::Tag that is the type of the correct tag.

template<vtkm::IdComponent Id>

struct CellShapeIdToTag
A traits-like class to get an CellShapeId known at compile time to a tag.

Example 1: Using vtkm::CellShapeIdToTag.

1 void CellFunction(vtkm::CellShapeTagTriangle)
2 {
3 std::cout << "In CellFunction for triangles." << std::endl;
4 }
5

6 void DoSomethingWithACell()
(continues on next page)

392 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

7 {
8 // Calls CellFunction overloaded with a vtkm::CellShapeTagTriangle.
9 CellFunction(vtkm::CellShapeIdToTag<vtkm::CELL_SHAPE_TRIANGLE>::Tag());

10 }

However, vtkm::CellShapeIdToTag is only viable if the identifier can be resolved at compile time. In the case where
a cell identifier is stored in a variable or an array or the code is using a vtkm::CellShapeTagGeneric, the correct
cell shape is not known until run time. In this case, the vtkmGenericCellShapeMacro macro can be used to check
all possible conditions. This macro is embedded in a switch statement where the condition is the cell shape identifier.

vtkmGenericCellShapeMacro(call)
A macro used in a switch statement to determine cell shape.

The vtkmGenericCellShapeMacro is a series of case statements for all of the cell shapes supported by VTK-m.
This macro is intended to be used inside of a switch statement on a cell type. For each cell shape condition, a
CellShapeTag typedef is created and the given call is executed.

A typical use case of this class is to create the specialization of a function overloaded on a cell shape tag for the
generic cell shape like as following.

template<typename WorkletType>
VTKM_EXEC
void MyCellOperation(vtkm::CellShapeTagGeneric cellShape,

const vtkm::exec::FunctorBase &worklet)
{
switch(cellShape.CellShapeId)
{
vtkmGenericCellShapeMacro(
MyCellOperation(CellShapeTag())
);

default: worklet.RaiseError("Encountered unknown cell shape."); break
}

}

Note that vtkmGenericCellShapeMacro does not have a default case. You should consider adding one that
gives a

Often this method is used to implement the condition for a vtkm::CellShapeTagGeneric in a function overloaded
for cell types. A demonstration of vtkmGenericCellShapeMacro is given in Example 2.

26.1.2 Cell Traits

The vtkm/CellTraits.h header file contains a traits class named vtkm::CellTraits that provides information
about a cell.

template<class CellTag>

struct CellTraits
Information about a cell based on its tag.

The templated CellTraits struct provides the basic high level information about cells (like the number of vertices
in the cell or its dimensionality).

26.1. Cell Shape Tags and Ids 393

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Types

using TopologicalDimensionsTag =
vtkm::CellTopologicalDimensionsTag<TOPOLOGICAL_DIMENSIONS>

This tag is typedef’ed to vtkm::CellTopologicalDimensionsTag<TOPOLOGICAL_DIMENSIONS>.

This provides a convenient way to overload a function based on topological dimensions (which is usually
more efficient than conditionals).

using IsSizeFixed = vtkm::CellTraitsTagSizeFixed
A tag specifying whether the number of points is fixed.

If set to vtkm::CellTraitsTagSizeFixed , then NUM_POINTS is set. If set to
vtkm::CellTraitsTagSizeVariable, then the number of points is not known at compile time.

Public Static Attributes

static const vtkm::IdComponent TOPOLOGICAL_DIMENSIONS = 3
This defines the topological dimensions of the cell type.

3 for polyhedra, 2 for polygons, 1 for lines, 0 for points.

static constexpr vtkm::IdComponent NUM_POINTS = 3
Number of points in the cell.

This is only defined for cell shapes of a fixed number of points (i.e., IsSizedFixed is set to
vtkm::CellTraitsTagSizeFixed).

template<vtkm::IdComponent dimension>

struct CellTopologicalDimensionsTag
vtkm::CellTraits::TopologyDimensionType is typedef to this with the template parameter set to
TOPOLOGICAL_DIMENSIONS.

See vtkm::CellTraits for more information.

struct CellTraitsTagSizeFixed
Tag for cell shapes with a fixed number of points.

struct CellTraitsTagSizeVariable
Tag for cell shapes that can have a variable number of points.

Example 2: Using vtkm::CellTraits to implement a polygon normal
estimator.

1 namespace detail
2 {
3

4 template<typename PointCoordinatesVector, typename WorkletType>
5 VTKM_EXEC_CONT typename PointCoordinatesVector::ComponentType CellNormalImpl(
6 const PointCoordinatesVector& pointCoordinates,
7 vtkm::CellTopologicalDimensionsTag<2>,

(continues on next page)

394 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

8 const WorkletType& worklet)
9 {

10 if (pointCoordinates.GetNumberOfComponents() >= 3)
11 {
12 return vtkm::TriangleNormal(
13 pointCoordinates[0], pointCoordinates[1], pointCoordinates[2]);
14 }
15 else
16 {
17 worklet.RaiseError("Degenerate polygon.");
18 return typename PointCoordinatesVector::ComponentType();
19 }
20 }
21

22 template<typename PointCoordinatesVector,
23 vtkm::IdComponent Dimensions,
24 typename WorkletType>
25 VTKM_EXEC_CONT typename PointCoordinatesVector::ComponentType CellNormalImpl(
26 const PointCoordinatesVector&,
27 vtkm::CellTopologicalDimensionsTag<Dimensions>,
28 const WorkletType& worklet)
29 {
30 worklet.RaiseError("Only polygons supported for cell normals.");
31 return typename PointCoordinatesVector::ComponentType();
32 }
33

34 } // namespace detail
35

36 template<typename CellShape, typename PointCoordinatesVector, typename WorkletType>
37 VTKM_EXEC_CONT typename PointCoordinatesVector::ComponentType CellNormal(
38 CellShape,
39 const PointCoordinatesVector& pointCoordinates,
40 const WorkletType& worklet)
41 {
42 return detail::CellNormalImpl(
43 pointCoordinates,
44 typename vtkm::CellTraits<CellShape>::TopologicalDimensionsTag(),
45 worklet);
46 }
47

48 template<typename PointCoordinatesVector, typename WorkletType>
49 VTKM_EXEC_CONT typename PointCoordinatesVector::ComponentType CellNormal(
50 vtkm::CellShapeTagGeneric shape,
51 const PointCoordinatesVector& pointCoordinates,
52 const WorkletType& worklet)
53 {
54 switch (shape.Id)
55 {
56 vtkmGenericCellShapeMacro(
57 return CellNormal(CellShapeTag(), pointCoordinates, worklet));
58 default:
59 worklet.RaiseError("Unknown cell type.");

(continues on next page)

26.1. Cell Shape Tags and Ids 395

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

60 return typename PointCoordinatesVector::ComponentType();
61 }
62 }

26.2 Parametric and World Coordinates

Each cell type supports a one-to-one mapping between a set of parametric coordinates in the unit cube (or some subset of
it) and the points in 3D space that are the locus contained in the cell. Parametric coordinates are useful because certain
features of the cell, such as vertex location and center, are at a consistent location in parametric space irrespective of
the location and distortion of the cell in world space. Also, many field operations are much easier with parametric
coordinates.

The vtkm/exec/ParametricCoordinates.h header file contains the following functions for working with paramet-
ric coordinates. These functions contain several overloads for using different cell shape tags.

template<typename ParametricCoordType>
static inline vtkm::ErrorCode vtkm::exec::ParametricCoordinatesCenter(vtkm::IdComponent numPoints,

vtkm::CellShapeTagGeneric
shape,
vtkm::Vec<ParametricCoordType,
3> &pcoords)

Returns the parametric center of the given cell shape with the given number of points.

Parameters

• numPoints – [in] The number of points in the cell.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• pcoords – [out] vtkm::Vec to store the parametric center.

template<typename ParametricCoordType>
static inline vtkm::ErrorCode vtkm::exec::ParametricCoordinatesPoint(vtkm::IdComponent numPoints,

vtkm::IdComponent pointIndex,
vtkm::CellShapeTagGeneric shape,
vtkm::Vec<ParametricCoordType,
3> &pcoords)

Returns the parametric coordinate of a cell point of the given shape with the given number of points.

Parameters

• numPoints – [in] The number of points in the cell.

• pointIndex – [in] The local index for the point to get the parametric coordinates of. This
index is between 0 and n-1 where n is the number of points in the cell.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• pcoords – [out] vtkm::Vec to store the parametric center.

template<typename WorldCoordVector, typename PCoordType>

396 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::ErrorCode vtkm::exec::ParametricCoordinatesToWorldCoordinates(const WorldCo-
ordVector
&pointWCoords,
const
vtkm::Vec<PCoordType,
3> &pcoords,
vtkm::CellShapeTagGeneric
shape, typename
WorldCoordVec-
tor::ComponentType
&result)

Converts parametric coordinates (coordinates relative to the cell) to world coordinates (coordinates in the global
system).

Parameters

• pointWCoords – [in] A list of world coordinates for each point in
the cell. This usually comes from a FieldInPoint argument in a
vtkm::worklet::WorkletVisitCellsWithPoints where the coordinate system is
passed into that argument.

• pcoords – [in] The parametric coordinates where you want to get world coordinates for.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] vtkm::Vec to store the interpolated world coordinates.

template<typename WorldCoordVector>
static inline vtkm::ErrorCode vtkm::exec::WorldCoordinatesToParametricCoordinates(const WorldCo-

ordVector
&pointWCoords,
const typename
WorldCoordVec-
tor::ComponentType
&wcoords,
vtkm::CellShapeTagGeneric
shape, typename
WorldCoordVec-
tor::ComponentType
&result)

Converts world coordinates (coordinates in the global system) to parametric coordinates (coordinates relative to
the cell).

This function can be slow for cell types with nonlinear interpolation (which is anything that is not a simplex).

Parameters

• pointWCoords – [in] A list of world coordinates for each point in
the cell. This usually comes from a FieldInPoint argument in a
vtkm::worklet::WorkletVisitCellsWithPoints where the coordinate system is
passed into that argument.

• wcoords – [in] The world coordinates where you want to get parametric coordinates for.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] vtkm::Vec to store the associated parametric coordinates.

26.2. Parametric and World Coordinates 397

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

26.3 Interpolation

The shape of every cell is defined by the connections of some finite set of points. Field values defined on those points
can be interpolated to any point within the cell to estimate a continuous field.

The vtkm/exec/CellInterpolate.h header contains the function vtkm::exec::CellInterpolate() to do this
interpolation.

template<typename FieldVecType, typename ParametricCoordType>
vtkm::ErrorCode vtkm::exec::CellInterpolate(const FieldVecType &pointFieldValues, const

vtkm::Vec<ParametricCoordType, 3> ¶metricCoords,
vtkm::CellShapeTagGeneric shape, typename
FieldVecType::ComponentType &result)

Interpolate a point field in a cell.

Given the point field values for each node and the parametric coordinates of a point within the cell, interpolates
the field to that point.

Parameters

• pointFieldValues – [in] A list of field values for each point in
the cell. This usually comes from a FieldInPoint argument in a
vtkm::worklet::WorkletVisitCellsWithPoints.

• parametricCoords – [in] The parametric coordinates where you want to get the interpo-
lated field value for.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] Value to store the interpolated field.

Example 3: Interpolating field values to a cell’s center.

1 struct CellCenters : vtkm::worklet::WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void(CellSetIn,
4 FieldInPoint inputField,
5 FieldOutCell outputField);
6 using ExecutionSignature = void(CellShape, PointCount, _2, _3);
7 using InputDomain = _1;
8

9 template<typename CellShapeTag, typename FieldInVecType, typename FieldOutType>
10 VTKM_EXEC void operator()(CellShapeTag shape,
11 vtkm::IdComponent pointCount,
12 const FieldInVecType& inputField,
13 FieldOutType& outputField) const
14 {
15 vtkm::Vec3f center;
16 vtkm::ErrorCode status =
17 vtkm::exec::ParametricCoordinatesCenter(pointCount, shape, center);
18 if (status != vtkm::ErrorCode::Success)
19 {
20 this->RaiseError(vtkm::ErrorString(status));
21 return;
22 }
23 vtkm::exec::CellInterpolate(inputField, center, shape, outputField);

(continues on next page)

398 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

24 }
25 };

26.4 Derivatives

Since interpolations provide a continuous field function over a cell, it is reasonable to consider the derivative of this
function. The vtkm/exec/CellDerivative.h header contains the function vtkm::exec::CellDerivative() to
compute derivatives. The derivative is returned in a vtkm::Vec of size 3 corresponding to the partial derivatives in
the 𝑥, 𝑦, and 𝑧 directions. This derivative is equivalent to the gradient of the field.

Example 4: Computing the derivative of the field at cell centers.

1 struct CellDerivatives : vtkm::worklet::WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void(CellSetIn,
4 FieldInPoint inputField,
5 FieldInPoint pointCoordinates,
6 FieldOutCell outputField);
7 using ExecutionSignature = void(CellShape, PointCount, _2, _3, _4);
8 using InputDomain = _1;
9

10 template<typename CellShapeTag,
11 typename FieldInVecType,
12 typename PointCoordVecType,
13 typename FieldOutType>
14 VTKM_EXEC void operator()(CellShapeTag shape,
15 vtkm::IdComponent pointCount,
16 const FieldInVecType& inputField,
17 const PointCoordVecType& pointCoordinates,
18 FieldOutType& outputField) const
19 {
20 vtkm::Vec3f center;
21 vtkm::ErrorCode status =
22 vtkm::exec::ParametricCoordinatesCenter(pointCount, shape, center);
23 if (status != vtkm::ErrorCode::Success)
24 {
25 this->RaiseError(vtkm::ErrorString(status));
26 return;
27 }
28 vtkm::exec::CellDerivative(inputField, pointCoordinates, center, shape, outputField);
29 }
30 };

26.4. Derivatives 399

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

26.5 Edges and Faces

As explained earlier in this chapter, a cell is defined by a collection of points and a shape identifier that describes how
the points come together to form the structure of the cell. The cell shapes supported by VTK-m are documented in
Section 26.1 (Cell Shape Tags and Ids). It contains Figure 1, which shows how the points for each shape form the
structure of the cell.

Most cell shapes can be broken into subelements. 2D and 3D cells have pairs of points that form edges at the boundaries
of the cell. Likewise, 3D cells have loops of edges that form faces that encase the cell. Figure 2 demonstrates the
relationship of these constituent elements for some example cell shapes.

Figure 2: The constituent elements (points, edges, and faces) of cells..

The header file vtkm/exec/CellEdge.h contains a collection of functions to help identify the edges of a cell.

static inline vtkm::ErrorCode vtkm::exec::CellEdgeNumberOfEdges(vtkm::IdComponent numPoints,
vtkm::CellShapeTagGeneric shape,
vtkm::IdComponent &numEdges)

Get the number of edges in a cell.

Parameters

• numPoints – [in] The number of points in the cell.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• numEdges – [out] A reference to return the number of edges.

static inline vtkm::ErrorCode vtkm::exec::CellEdgeLocalIndex(vtkm::IdComponent numPoints,
vtkm::IdComponent pointIndex,
vtkm::IdComponent edgeIndex,
vtkm::CellShapeTagGeneric shape,
vtkm::IdComponent &result)

Given the index for an edge of a cell and one of the points on that edge, this function returns the point index for
the cell.

To get the point indices relative to the data set, the returned index should be used to reference a PointIndices
list.

Parameters

• numPoints – [in] The number of points in the cell.

• pointIndex – [in] The index of the edge within the cell.

• edgeIndex – [in] The index of the point on the edge (either 0 or 1).

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] Reference to put the index of the point relative to the cell (between 0 and the
number of points in the cell).

template<typename CellShapeTag, typename GlobalPointIndicesVecType>

400 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

static inline vtkm::ErrorCode vtkm::exec::CellEdgeCanonicalId(vtkm::IdComponent numPoints,
vtkm::IdComponent edgeIndex,
CellShapeTag shape, const
GlobalPointIndicesVecType
&globalPointIndicesVec, vtkm::Id2 &result)

Returns a canonical identifier for a cell edge.

Given information about a cell edge and the global point indices for that cell, returns a vtkm::Id2 that contains
values that are unique to that edge. The values for two edges will be the same if and only if the edges contain the
same points.

The following example demonstrates a pair of worklets that use the cell edge functions. As is typical for operations of
this nature, one worklet counts the number of edges in each cell and another uses this count to generate the data.

Did You Know?

Example 5 demonstrates one of many techniques for creating cell sets in a worklet. Chap-
ter~ref{chap:GeneratingCellSets} describes this and many more such techniques.

Example 5: Using cell edge functions.

1 struct EdgesCount : vtkm::worklet::WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void(CellSetIn, FieldOutCell numEdgesInCell);
4 using ExecutionSignature = void(CellShape, PointCount, _2);
5 using InputDomain = _1;
6

7 template<typename CellShapeTag>
8 VTKM_EXEC void operator()(CellShapeTag cellShape,
9 vtkm::IdComponent numPointsInCell,

10 vtkm::IdComponent& numEdges) const
11 {
12 vtkm::ErrorCode status =
13 vtkm::exec::CellEdgeNumberOfEdges(numPointsInCell, cellShape, numEdges);
14 if (status != vtkm::ErrorCode::Success)
15 {
16 this->RaiseError(vtkm::ErrorString(status));
17 }
18 }
19 };
20

21 struct EdgesExtract : vtkm::worklet::WorkletVisitCellsWithPoints
22 {
23 using ControlSignature = void(CellSetIn, FieldOutCell edgeIndices);
24 using ExecutionSignature = void(CellShape, PointIndices, VisitIndex, _2);
25 using InputDomain = _1;
26

27 using ScatterType = vtkm::worklet::ScatterCounting;
28

29 template<typename CellShapeTag,
30 typename PointIndexVecType,
31 typename EdgeIndexVecType>
32 VTKM_EXEC void operator()(CellShapeTag cellShape,

(continues on next page)

26.5. Edges and Faces 401

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

33 const PointIndexVecType& globalPointIndicesForCell,
34 vtkm::IdComponent edgeIndex,
35 EdgeIndexVecType& edgeIndices) const
36 {
37 vtkm::IdComponent numPointsInCell =
38 globalPointIndicesForCell.GetNumberOfComponents();
39

40 vtkm::ErrorCode error;
41

42 vtkm::IdComponent pointInCellIndex0;
43 error = vtkm::exec::CellEdgeLocalIndex(
44 numPointsInCell, 0, edgeIndex, cellShape, pointInCellIndex0);
45 if (error != vtkm::ErrorCode::Success)
46 {
47 this->RaiseError(vtkm::ErrorString(error));
48 return;
49 }
50

51 vtkm::IdComponent pointInCellIndex1;
52 error = vtkm::exec::CellEdgeLocalIndex(
53 numPointsInCell, 1, edgeIndex, cellShape, pointInCellIndex1);
54 if (error != vtkm::ErrorCode::Success)
55 {
56 this->RaiseError(vtkm::ErrorString(error));
57 return;
58 }
59

60 edgeIndices[0] = globalPointIndicesForCell[pointInCellIndex0];
61 edgeIndices[1] = globalPointIndicesForCell[pointInCellIndex1];
62 }
63 };

The header file vtkm/exec/CellFace.h contains a collection of functions to help identify the faces of a cell.

template<typename CellShapeTag>
static inline vtkm::ErrorCode vtkm::exec::CellFaceNumberOfFaces(CellShapeTag shape, vtkm::IdComponent

&result)
Get the number of faces in a cell.

Parameters

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] A reference to return the number of faces.

template<typename CellShapeTag>
static inline vtkm::ErrorCode vtkm::exec::CellFaceNumberOfPoints(vtkm::IdComponent faceIndex,

CellShapeTag shape,
vtkm::IdComponent &result)

Get the number of points in a face.

Given a local index to the face and a shape of the cell, this method returns the number of points in that particular
face.

Parameters

402 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

• faceIndex – [in] The index of the face within the cell.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] A reference to return the number of points in the selected face.

template<typename CellShapeTag>
static inline vtkm::ErrorCode vtkm::exec::CellFaceShape(vtkm::IdComponent faceIndex, CellShapeTag shape,

vtkm::UInt8 &result)
Get the shape of a face.

Given a local index to the face and a shape of the cell, this method returns the identifier for the shape of that face.
Faces are always polygons, so it is valid to just to treat the face as a CELL_SHAPE_POLYGON. However, the face
will be checked to see if it can be further specialized to CELL_SHAPE_TRIANGLE or CELL_SHAPE_QUAD.

Parameters

• faceIndex – [in] The index of the face within the cell.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] A reference to return the number of points in the selected face.

template<typename CellShapeTag>
static inline vtkm::ErrorCode vtkm::exec::CellFaceLocalIndex(vtkm::IdComponent pointIndex,

vtkm::IdComponent faceIndex, CellShapeTag
shape, vtkm::IdComponent &result)

Given the index for a face of a cell and one of the points on that face, this function returns the point index for the
cell.

To get the point indices relative to the data set, the returned index should be used to reference a PointIndices
list.

Parameters

• pointIndex – [in] The index of the edge within the cell.

• faceIndex – [in] The index of the point on the face.

• shape – [in] A tag of type CellShapeTag* to identify the shape of the cell. This method
is overloaded for different shape types.

• result – [out] Reference to put the index of the point relative to the cell (between 0 and the
number of points in the cell).

template<typename CellShapeTag, typename GlobalPointIndicesVecType>
static inline vtkm::ErrorCode vtkm::exec::CellFaceCanonicalId(vtkm::IdComponent faceIndex,

CellShapeTag shape, const
GlobalPointIndicesVecType
&globalPointIndicesVec, vtkm::Id3 &result)

Returns a canonical identifier for a cell face.

Given information about a cell face and the global point indices for that cell, returns a vtkm::Id3 that contains
values that are unique to that face. The values for two faces will be the same if and only if the faces contain the
same points.

Note that this property is only true if the mesh is conforming. That is, any two neighboring cells that share a face
have the same points on that face. This preculdes 2 faces sharing more than a single point or single edge.

26.5. Edges and Faces 403

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

The following example demonstrates a triple of worklets that use the cell face functions. As is typical for operations
of this nature, the worklets are used in steps to first count entities and then generate new entities. In this case, the first
worklet counts the number of faces and the second worklet counts the points in each face. The third worklet generates
cells for each face.

Example 6: Using cell face functions.

1 struct FacesCount : vtkm::worklet::WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void(CellSetIn, FieldOutCell numFacesInCell);
4 using ExecutionSignature = void(CellShape, _2);
5 using InputDomain = _1;
6

7 template<typename CellShapeTag>
8 VTKM_EXEC void operator()(CellShapeTag cellShape, vtkm::IdComponent& numFaces) const
9 {

10 vtkm::ErrorCode status = vtkm::exec::CellFaceNumberOfFaces(cellShape, numFaces);
11 if (status != vtkm::ErrorCode::Success)
12 {
13 this->RaiseError(vtkm::ErrorString(status));
14 }
15 }
16 };
17

18 struct FacesCountPoints : vtkm::worklet::WorkletVisitCellsWithPoints
19 {
20 using ControlSignature = void(CellSetIn,
21 FieldOutCell numPointsInFace,
22 FieldOutCell faceShape);
23 using ExecutionSignature = void(CellShape, VisitIndex, _2, _3);
24 using InputDomain = _1;
25

26 using ScatterType = vtkm::worklet::ScatterCounting;
27

28 template<typename CellShapeTag>
29 VTKM_EXEC void operator()(CellShapeTag cellShape,
30 vtkm::IdComponent faceIndex,
31 vtkm::IdComponent& numPointsInFace,
32 vtkm::UInt8& faceShape) const
33 {
34 vtkm::exec::CellFaceNumberOfPoints(faceIndex, cellShape, numPointsInFace);
35 switch (numPointsInFace)
36 {
37 case 3:
38 faceShape = vtkm::CELL_SHAPE_TRIANGLE;
39 break;
40 case 4:
41 faceShape = vtkm::CELL_SHAPE_QUAD;
42 break;
43 default:
44 faceShape = vtkm::CELL_SHAPE_POLYGON;
45 break;
46 }
47 }

(continues on next page)

404 Chapter 26. Working with Cells

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

48 };
49

50 struct FacesExtract : vtkm::worklet::WorkletVisitCellsWithPoints
51 {
52 using ControlSignature = void(CellSetIn, FieldOutCell faceIndices);
53 using ExecutionSignature = void(CellShape, PointIndices, VisitIndex, _2);
54 using InputDomain = _1;
55

56 using ScatterType = vtkm::worklet::ScatterCounting;
57

58 template<typename CellShapeTag,
59 typename PointIndexVecType,
60 typename FaceIndexVecType>
61 VTKM_EXEC void operator()(CellShapeTag cellShape,
62 const PointIndexVecType& globalPointIndicesForCell,
63 vtkm::IdComponent faceIndex,
64 FaceIndexVecType& faceIndices) const
65 {
66 vtkm::IdComponent numPointsInFace = faceIndices.GetNumberOfComponents();
67 for (vtkm::IdComponent pointInFaceIndex = 0; pointInFaceIndex < numPointsInFace;
68 pointInFaceIndex++)
69 {
70 vtkm::IdComponent pointInCellIndex;
71 vtkm::ErrorCode error = vtkm::exec::CellFaceLocalIndex(
72 pointInFaceIndex, faceIndex, cellShape, pointInCellIndex);
73 if (error != vtkm::ErrorCode::Success)
74 {
75 this->RaiseError(vtkm::ErrorString(error));
76 return;
77 }
78 faceIndices[pointInFaceIndex] = globalPointIndicesForCell[pointInCellIndex];
79 }
80 }
81 };

26.5. Edges and Faces 405

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

406 Chapter 26. Working with Cells

CHAPTER

TWENTYSEVEN

MEMORY LAYOUT OF ARRAY HANDLES

Chapter 17 (Basic Array Handles) describes the basics of the vtkm::cont::ArrayHandle class, which is the interface
to the arrays of data that VTK-m operates on. Recall that vtkm::cont::ArrayHandle is a templated class with two
template parameters. The first template argument is the type of each item in the array. The second parameter, which is
optional, determines how the array is stored in memory. This can be used in a variety of different ways, but its primary
purpose is to provide a strategy for laying the data out in memory. This chapter documents the ways in which VTK-m
can store and access arrays of data in different layouts.

27.1 Basic Memory Layout

If the second storage template parameter of vtkm::cont::ArrayHandle is not specified, it defaults to the basic
memory layout. This is roughly synonymous with a wrapper around a standard C array, much like std::vector. In
fact, Section 17.1 (Creating Array Handles) provides examples of wrapping a default vtkm::cont::ArrayHandle
around either a basic C array or a std::vector.

VTK-m provides vtkm::cont::ArrayHandleBasic as a convenience class for working with basic array handles.
vtkm::cont::ArrayHandleBasic is a simple subclass of vtkm::cont::ArrayHandle with the default storage
in the second template argument (which is vtkm::cont::StorageTagBasic). vtkm::cont::ArrayHandleBasic
and its superclass can be used more or less interchangeably.

template<typename T>

class ArrayHandleBasic : public vtkm::cont::ArrayHandle<T , vtkm::cont::StorageTagBasic>
Basic array storage for an array handle.

This array handle references a standard C array. It provides a level of safety and management across devices.
This is the default used when no storage is specified. Using this subclass allows access to the underlying raw
array.

Public Functions

inline const T *GetReadPointer() const
Gets raw access to the ArrayHandle’s data.

Note that the returned array may become invalidated by other operations on the ArryHandle.

inline const T *GetReadPointer(vtkm::cont::Token &token) const
Gets raw access to the ArrayHandle’s data.

Parameters
token – When a vtkm::cont::Token is provided, the array is locked from being used by
any write operations until the token goes out of scope.

407

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline T *GetWritePointer() const
Gets raw write access to the ArrayHandle’s data.

Note that the returned array may become invalidated by other operations on the ArryHandle.

inline T *GetWritePointer(vtkm::cont::Token &token) const
Gets raw write access to the ArrayHandle’s data.

Parameters
token – When a vtkm::cont::Token is provided, the array is locked from being used by
any read or write operations until the token goes out of scope.

inline const T *GetReadPointer(vtkm::cont::DeviceAdapterId device) const
Gets raw access to the ArrayHandle’s data on a particular device.

Note that the returned array may become invalidated by other operations on the ArryHandle.

Parameters
device – The device ID or device tag specifying on which device the array will be valid on.

inline const T *GetReadPointer(vtkm::cont::DeviceAdapterId device, vtkm::cont::Token &token) const
Gets raw access to the ArrayHandle’s data.

Parameters

• device – The device ID or device tag specifying on which device the array will be valid
on.

• token – When a vtkm::cont::Token is provided, the array is locked from being used
by any write operations until the token goes out of scope.

inline T *GetWritePointer(vtkm::cont::DeviceAdapterId device) const
Gets raw write access to the ArrayHandle’s data.

Note that the returned array may become invalidated by other operations on the ArryHandle.

Parameters
device – The device ID or device tag specifying on which device the array will be valid on.

inline T *GetWritePointer(vtkm::cont::DeviceAdapterId device, vtkm::cont::Token &token) const
Gets raw write access to the ArrayHandle’s data.

Parameters

• device – The device ID or device tag specifying on which device the array will be valid
on.

• token – When a vtkm::cont::Token is provided, the array is locked from being used
by any read or write operations until the token goes out of scope.

Because a vtkm::cont::ArrayHandleBasic represents arrays as a standard C array, it is possible
to get a pointer to this array using either vtkm::cont::ArrayHandleBasic::GetReadPointer() or
vtkm::cont::ArrayHandleBasic::GetWritePointer().

Example 1: Getting a standard C array from a basic array handle.

1 void LegacyFunction(const int* data);
2

3 void UseArrayWithLegacy(const vtkm::cont::ArrayHandle<vtkm::Int32> array)
4 {
5 vtkm::cont::ArrayHandleBasic<vtkm::Int32> basicArray = array;

(continues on next page)

408 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

6 vtkm::cont::Token token; // Token prevents array from changing while in scope.
7 const int* cArray = basicArray.GetReadPointer(token);
8 LegacyFunction(cArray);
9 // When function returns, token goes out of scope and array can be modified.

10 }

Did You Know?

When you get an array pointer this way, the vtkm::cont::ArrayHandle still has a reference to it. If using multiple
threads, you can use a vtkm::cont::Token object to lock the array. When the token is used to get a pointer, it will
lock the array as long as the token exists. Example 1 demonstrates using a vtkm::cont::Token.

27.2 Structure of Arrays

The basic vtkm::cont::ArrayHandle stores vtkm::Vec objects in sequence. In this sense, a basic array is an
Array of Structures (AOS). Another approach is to store each component of the structure (i.e., the vtkm::Vec) in
a separate array. This is known as a Structure of Arrays (SOA). There are advantages to this approach including
potentially better cache performance and the ability to combine arrays already represented as separate components
without copying them. Arrays of this nature are represented with a vtkm::cont::ArrayHandleSOA , which is a
subclass of vtkm::cont::StorageTagSOA.

template<typename T>

class ArrayHandleSOA : public vtkm::cont::ArrayHandle<T , vtkm::cont::StorageTagSOA>
An ArrayHandle that for Vecs stores each component in a separate physical array.

ArrayHandleSOA behaves like a regular ArrayHandle (with a basic storage) except that if you specify a
ValueType of a Vec or a Vec-like, it will actually store each component in a separate physical array. When
data are retrieved from the array, they are reconstructed into Vec objects as expected.

The intention of this array type is to help cover the most common ways data is lain out in memory. Typically,
arrays of data are either an “array of structures” like the basic storage where you have a single array of structures
(like Vec) or a “structure of arrays” where you have an array of a basic type (like float) for each component
of the data being represented. The ArrayHandleSOA makes it easy to cover this second case without creating
special types.

ArrayHandleSOA can be constructed from a collection of ArrayHandle with basic storage. This allows you to
construct Vec arrays from components without deep copies.

Public Functions

inline ArrayHandleSOA(const std::array<ComponentArrayType, NUM_COMPONENTS>
&componentArrays)

Construct an ArrayHandleSOA from a collection of component arrays.

vtkm::cont::ArrayHandle<T> components1;
vtkm::cont::ArrayHandle<T> components2;
vtkm::cont::ArrayHandle<T> components3;
// Fill arrays...

(continues on next page)

27.2. Structure of Arrays 409

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

std::array<T, 3> allComponents{ components1, components2, components3 };
vtkm::cont::make_ArrayHandleSOA<vtkm::Vec<T, 3>vecarray(allComponents);

inline ArrayHandleSOA(const std::vector<ComponentArrayType> &componentArrays)
Construct an ArrayHandleSOA from a collection of component arrays.

vtkm::cont::ArrayHandle<T> components1;
vtkm::cont::ArrayHandle<T> components2;
vtkm::cont::ArrayHandle<T> components3;
// Fill arrays...

std::vector<T> allComponents{ components1, components2, components3 };
vtkm::cont::make_ArrayHandleSOA<vtkm::Vec<T, 3>vecarray(allComponents);

inline ArrayHandleSOA(std::initializer_list<ComponentArrayType> &&componentArrays)
Construct an ArrayHandleSOA from a collection of component arrays.

vtkm::cont::ArrayHandle<T> components1;
vtkm::cont::ArrayHandle<T> components2;
vtkm::cont::ArrayHandle<T> components3;
// Fill arrays...

vtkm::cont::make_ArrayHandleSOA<vtkm::Vec<T, 3> vecarray(
{ components1, components2, components3 });

inline ArrayHandleSOA(std::initializer_list<std::vector<ComponentType>> &&componentVectors)
Construct an ArrayHandleSOA from a collection of component arrays.

The data is copied from the std::vectors to the array handle.

std::vector<T> components1;
std::vector<T> components2;
std::vector<T> components3;
// Fill arrays...

vtkm::cont::ArrayHandleSOA<vtkm::Vec<T, 3>> vecarray(
{ components1, components2, components3 });

template<typename Allocator, typename ...RemainingVectors>
inline ArrayHandleSOA(vtkm::CopyFlag copy, const std::vector<ComponentType, Allocator> &vector0,

RemainingVectors&&... componentVectors)
Construct an ArrayHandleSOA from a collection of component arrays.

The first argument is a vtkm::CopyFlag to determine whether the input arrays should be copied. The
component arrays are listed as arguments. This only works if all the templated arguments are of type
std::vector<ComponentType>.

std::vector<T> components1;
std::vector<T> components2;
std::vector<T> components3;
// Fill arrays...

(continues on next page)

410 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

vtkm::cont::ArrayHandleSOA<vtkm::Vec<T, 3>> vecarray(
vtkm::CopyFlag::On, components1, components2, components3);

template<typename ...RemainingVectors>
inline ArrayHandleSOA(vtkm::CopyFlag copy, std::vector<ComponentType> &&vector0,

RemainingVectors&&... componentVectors)
Construct an ArrayHandleSOA from a collection of component arrays.

The first argument is a vtkm::CopyFlag to determine whether the input arrays should be copied. The
component arrays are listed as arguments. This only works if all the templated arguments are rvalues of
type std::vector<ComponentType>.

std::vector<T> components1;
std::vector<T> components2;
std::vector<T> components3;
// Fill arrays...

vtkm::cont::ArrayHandleSOA<vtkm::Vec<T, N> vecarray(vtkm::CopyFlag::Off,
std::move(components1),
std::move(components2),
std::move(components3);

inline ArrayHandleSOA(std::initializer_list<const ComponentType*> componentArrays, vtkm::Id length,
vtkm::CopyFlag copy)

Construct an ArrayHandleSOA from a collection of component arrays.

T* components1;
T* components2;
T* components3;
// Fill arrays...

vtkm::cont::ArrayHandleSOA<vtkm::Vec<T, 3>>(
{ components1, components2, components3 }, size, vtkm::CopyFlag::On);

template<typename ...RemainingArrays>
inline ArrayHandleSOA(vtkm::Id length, vtkm::CopyFlag copy, const ComponentType *array0, const

RemainingArrays&... componentArrays)
Construct an ArrayHandleSOA from a collection of component arrays.

The component arrays are listed as arguments. This only works if all the templated arguments are of type
ComponentType*.

T* components1;
T* components2;
T* components3;
// Fill arrays...

vtkm::cont::ArrayHandleSOA<vtkm::Vec<T, 3>> vecarray(
size, vtkm::CopyFlag::On, components1, components2, components3);

inline vtkm::cont::ArrayHandleBasic<ComponentType> GetArray(vtkm::IdComponent index) const
Get a basic array representing the component for the given index.

27.2. Structure of Arrays 411

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline void SetArray(vtkm::IdComponent index, const ComponentArrayType &array)
Replace a component array.

vtkm::cont::ArrayHandleSOA can be constructed and allocated just as a basic array handle. Addi-
tionally, you can use its constructors or the vtkm::cont::make_ArrayHandleSOA() functions to build a
vtkm::cont::ArrayHandleSOA from basic vtkm::cont::ArrayHandle’s that hold the components.

template<typename ValueType>
ArrayHandleSOA<ValueType> vtkm::cont::make_ArrayHandleSOA(std::initializer_list<vtkm::cont::ArrayHandle<typename

vtkm::VecTraits<ValueType>::ComponentType,
vtkm::cont::StorageTagBasic>>
&&componentArrays)

Create a vtkm::cont::ArrayHandleSOA with an initializer list of array handles.

vtkm::cont::ArrayHandle<T> components1;
vtkm::cont::ArrayHandle<T> components2;
vtkm::cont::ArrayHandle<T> components3;
// Fill arrays...

auto vecarray = vtkm::cont::make_ArrayHandleSOA<vtkm::Vec<T, 3>>(
{ components1, components2, components3 });

template<typename ComponentType, typename ...RemainingArrays>
ArrayHandleSOA<vtkm::Vec<ComponentType, internal::VecSizeFromRemaining<RemainingArrays...>::value>> vtkm::cont::make_ArrayHandleSOA(const

vtkm::cont::ArrayHandle<ComponentType,
vtkm::cont::StorageTagBasic>
&com-
po-
nen-
tAr-
ray0,
const
Re-
main-
ingAr-
rays&...
com-
po-
nen-
tAr-
rays)

Create a vtkm::cont::ArrayHandleSOA with a number of array handles.

This only works if all the templated arguments are of type vtkm::cont::ArrayHandle<ComponentType>.

vtkm::cont::ArrayHandle<T> components1;
vtkm::cont::ArrayHandle<T> components2;
vtkm::cont::ArrayHandle<T> components3;
// Fill arrays...

auto vecarray =
vtkm::cont::make_ArrayHandleSOA(components1, components2, components3);

template<typename ValueType>

412 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

ArrayHandleSOA<ValueType> vtkm::cont::make_ArrayHandleSOA(std::initializer_list<std::vector<typename
vtkm::VecTraits<ValueType>::ComponentType>>
&&componentVectors)

Create a vtkm::cont::ArrayHandleSOA with an initializer list of std::vector.

The data is copied from the std::vectors to the array handle.

std::vector<T> components1;
std::vector<T> components2;
std::vector<T> components3;
// Fill arrays...

auto vecarray = vtkm::cont::make_ArrayHandleSOA<vtkm::Vec<T, 3>>(
{ components1, components2, components3 });

template<typename ComponentType, typename ...RemainingVectors>
ArrayHandleSOA<vtkm::Vec<ComponentType, internal::VecSizeFromRemaining<RemainingVectors...>::value>> vtkm::cont::make_ArrayHandleSOA(vtkm::CopyFlag

copy,
const
std::vector<ComponentType>
&vec-
tor0,
Re-
main-
ingVec-
tors&&...
com-
po-
nentVec-
tors)

Create a vtkm::cont::ArrayHandleSOA with a number of std::vector.

The first argument is a vtkm::CopyFlag to determine whether the input arrays should be copied. The
component arrays are listed as arguments. This only works if all the templated arguments are of type
std::vector<ComponentType>.

std::vector<T> components1;
std::vector<T> components2;
std::vector<T> components3;
// Fill arrays...

auto vecarray = vtkm::cont::make_ArrayHandleSOA(
vtkm::CopyFlag::On, components1, components2, components3);

template<typename ComponentType, typename ...RemainingVectors>

27.2. Structure of Arrays 413

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

ArrayHandleSOA<vtkm::Vec<ComponentType, internal::VecSizeFromRemaining<RemainingVectors...>::value>> vtkm::cont::make_ArrayHandleSOA(vtkm::CopyFlag
copy,
std::vector<ComponentType>
&&vec-
tor0,
Re-
main-
ingVec-
tors&&...
com-
po-
nentVec-
tors)

Create a vtkm::cont::ArrayHandleSOA with a number of std::vector.

The first argument is a vtkm::CopyFlag to determine whether the input arrays should be copied. The com-
ponent arrays are listed as arguments. This only works if all the templated arguments are rvalues of type
std::vector<ComponentType>.

std::vector<T> components1;
std::vector<T> components2;
std::vector<T> components3;
// Fill arrays...

auto vecarray = vtkm::cont::make_ArrayHandleSOA(vtkm::CopyFlag::Off,
std::move(components1),
std::move(components2),
std::move(components3);

template<typename ComponentType, typename ...RemainingVectors>
ArrayHandleSOA<vtkm::Vec<ComponentType, internal::VecSizeFromRemaining<RemainingVectors...>::value>> vtkm::cont::make_ArrayHandleSOAMove(std::vector<ComponentType>

&&vec-
tor0,
Re-
main-
ingVec-
tors&&...
com-
po-
nentVec-
tors)

Create a vtkm::cont::ArrayHandleSOA with a number of std::vector.

This only works if all the templated arguments are rvalues of type std::vector<ComponentType>.

std::vector<T> components1;
std::vector<T> components2;
std::vector<T> components3;
// Fill arrays...

auto vecarray = vtkm::cont::make_ArrayHandleSOAMove(
std::move(components1), std::move(components2), std::move(components3));

template<typename ValueType>

414 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

ArrayHandleSOA<ValueType> vtkm::cont::make_ArrayHandleSOA(std::initializer_list<const typename
vtkm::VecTraits<ValueType>::ComponentType*>
&&componentVectors, vtkm::Id length,
vtkm::CopyFlag copy)

Create a vtkm::cont::ArrayHandleSOA with an initializer list of C arrays.

T* components1;
T* components2;
T* components3;
// Fill arrays...

auto vecarray = vtkm::cont::make_ArrayHandleSOA<vtkm::Vec<T, 3>>(
{ components1, components2, components3 }, size, vtkm::CopyFlag::On);

template<typename ComponentType, typename ...RemainingArrays>
ArrayHandleSOA<vtkm::Vec<ComponentType, internal::VecSizeFromRemaining<RemainingArrays...>::value>> vtkm::cont::make_ArrayHandleSOA(vtkm::Id

length,
vtkm::CopyFlag
copy,
const
Com-
po-
nent-
Type
*ar-
ray0,
const
Re-
main-
ingAr-
rays*...
com-
po-
nen-
tAr-
rays)

Create a vtkm::cont::ArrayHandleSOA with a number of C arrays.

This only works if all the templated arguments are of type ComponentType*.

T* components1;
T* components2;
T* components3;
// Fill arrays...

auto vecarray = vtkm::cont::make_ArrayHandleSOA(
size, vtkm::CopyFlag::On, components1, components2, components3);

Example 2: Creating an SOA array handle from component arrays.

1 vtkm::cont::ArrayHandle<vtkm::FloatDefault> component1;
2 vtkm::cont::ArrayHandle<vtkm::FloatDefault> component2;
3 vtkm::cont::ArrayHandle<vtkm::FloatDefault> component3;

(continues on next page)

27.2. Structure of Arrays 415

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

4 // Fill component arrays...
5

6 vtkm::cont::ArrayHandleSOA<vtkm::Vec3f> soaArray =
7 vtkm::cont::make_ArrayHandleSOA(component1, component2, component3);

Did You Know?

In addition to constructing a vtkm::cont::ArrayHandleSOA from its component arrays, you can get the component
arrays back out using the vtkm::cont::ArrayHandleSOA::GetArray() method.

27.3 Strided Arrays

vtkm::cont::ArrayHandleBasic operates on a tightly packed array. That is, each value follows immediately after
the proceeding value in memory. However, it is often convenient to access values at different strides or offsets. This
allows representations of data that are not tightly packed in memory. The vtkm::cont::ArrayHandleStride class
allows arrays with different data packing.

template<typename T>

class ArrayHandleStride : public vtkm::cont::ArrayHandle<T , vtkm::cont::StorageTagStride>
An ArrayHandle that accesses a basic array with strides and offsets.

ArrayHandleStride is a simple ArrayHandle that accesses data with a prescribed stride and offset. You
specify the stride and offset at construction. So when a portal for this ArrayHandle Gets or Sets a value at a
specific index, the value accessed in the underlying C array is:

(index * stride) + offset

Optionally, you can also specify a modulo and divisor. If they are specified, the index mangling becomes:

(((index / divisor) % modulo) * stride) + offset

You can “disable” any of the aforementioned operations by setting them to the following values (most of which
are arithmetic identities):

• stride: 1

• offset: 0

• modulo: 0

• divisor: 1

Note that all of these indices are referenced by the ValueType of the array. So, an
ArrayHandleStride<vtkm::Float32> with an offset of 1 will actually offset by 4 bytes (the size of a
vtkm::Float32).

ArrayHandleStride is used to provide a unified type for pulling a component out of an ArrayHandle. This
way, you can iterate over multiple components in an array without having to implement a template instance for
each vector size or representation.

416 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Public Functions

inline ArrayHandleStride(const vtkm::cont::ArrayHandle<T , vtkm::cont::StorageTagBasic> &array,
vtkm::Id numValues, vtkm::Id stride, vtkm::Id offset, vtkm::Id modulo = 0,
vtkm::Id divisor = 1)

Construct an ArrayHandleStride from a basic array with specified access patterns.

inline vtkm::Id GetStride() const
Get the stride that values are accessed.

The stride is the spacing between consecutive values. The stride is measured in terms of the number of
values. A stride of 1 means a fully packed array. A stride of 2 means selecting every other values.

inline vtkm::Id GetOffset() const
Get the offset to start reading values.

The offset is the number of values to skip before the first value. The offset is measured in terms of the
number of values. An offset of 0 means the first value at the beginning of the array.

The offset is unaffected by the stride and dictates where the strides starts counting. For example, given an
array with size 3 vectors packed into an array, a strided array referencing the middle component will have
offset 1 and stride 3.

inline vtkm::Id GetModulo() const
Get the modulus of the array index.

When the index is modulo a value, it becomes the remainder after dividing by that value. The effect of the
modulus is to cause the index to repeat over the values in the array.

If the modulo is set to 0, then it is ignored.

inline vtkm::Id GetDivisor() const
Get the divisor of the array index.

The index is divided by the divisor before the other effects. The default divisor of 1 will have no effect on
the indexing. Setting the divisor to a value greater than 1 has the effect of repeating each value that many
times.

inline vtkm::cont::ArrayHandleBasic<T> GetBasicArray() const
Return the underlying data as a basic array handle.

It is common for the same basic array to be shared among multiple vtkm::cont::ArrayHandleStride
objects.

The most common use of vtkm::cont::ArrayHandleStride is to pull components out of arrays.
vtkm::cont::ArrayHandleStride is seldom constructed directly. Rather, VTK-m has mechanisms to ex-
tract a component from an array. To extract a component directly from a vtkm::cont::ArrayHandle, use
vtkm::cont::ArrayExtractComponent().

template<typename T, typename S>

27.3. Strided Arrays 417

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::ArrayHandleStride<typename vtkm::VecTraits<T>::BaseComponentType> vtkm::cont::ArrayExtractComponent(const
vtkm::cont::ArrayHandle<T ,
S>
&src,
vtkm::IdComponent
com-
po-
nentIn-
dex,
vtkm::CopyFlag
al-
low-
Copy
=
vtkm::CopyFlag::On)

Pulls a component out of an ArrayHandle.

Given an ArrayHandle of any type, ArrayExtractComponent returns an ArrayHandleStride of the base
component type that contains the data for the specified array component. This function can be used to apply an
operation on an ArrayHandle one component at a time. Because the array type is always ArrayHandleStride,
you can drastically cut down on the number of templates to instantiate (at a possible cost to performance).

Note that ArrayExtractComponent will flatten out the indices of any vec value type and return an
ArrayExtractComponent of the base component type. For example, if you call ArrayExtractComponent
on an ArrayHandle with a value type of vtkm::Vec<vtkm::Vec<vtkm::Float32, 2>, 3>, you will get an
ArrayExtractComponent<vtkm::Float32> returned. The componentIndex provided will be applied to the
nested vector in depth first order. So in the previous example, a componentIndex of 0 gets the values at [0][0],
componentIndex of 1 gets [0][1], componentIndex of 2 gets [1][0], and so on.

Some ArrayHandles allow this method to return an ArrayHandleStride that shares the same memory as
the the original ArrayHandle. This form will be used if possible. In this case, if data are written into the
ArrayHandleStride, they are also written into the original ArrayHandle. However, other forms will require
copies into a new array. In this case, writes into ArrayHandleStride will not affect the original ArrayHandle.

For some operations, such as writing into an output array, this behavior of shared arrays is necessary. For this
case, the optional argument allowCopy can be set to vtkm::CopyFlag::Off to prevent the copying behavior
into the return ArrayHandleStride. If this is the case, an ErrorBadValue is thrown. If the arrays can be
shared, they always will be regardless of the value of allowCopy.

Many forms of ArrayHandle have optimized versions to pull out a component. Some, however, do not. In these
cases, a fallback array copy, done in serial, will be performed. A warning will be logged to alert users of this
likely performance bottleneck.

As an implementation note, this function should not be overloaded directly. Instead, ArrayHandle implemen-
tations should provide a specialization of vtkm::cont::internal::ArrayExtractComponentImpl.

The main advantage of extracting components this way is to convert data represented in different types of arrays into
an array of a single type. For example, vtkm::cont::ArrayHandleStride can represent a component from either a
vtkm::cont::ArrayHandleBasic or a vtkm::cont::ArrayHandleSOA by just using different stride values. This
is used by vtkm::cont::UnknownArrayHandle::ExtractComponent() and elsewhere to create a concrete array
handle class without knowing the actual class.

Common Errors

Many, but not all, of VTK-m’s arrays can be represented by a vtkm::cont::ArrayHandleStride directly without
copying. If VTK-m cannot easily create a vtkm::cont::ArrayHandleStride when attempting such an operation, it

418 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

will use a slow copying fallback. A warning will be issued whenever this happens. Be on the lookout for such warnings
and consider changing the data representation when that happens.

27.4 Runtime Vec Arrays

Because many of the devices VTK-m runs on cannot efficiently allocate memory while an algorithm is running, the data
held in vtkm::cont::ArrayHandle’s are usually required to be a static size. For example, the vtkm::Vec object
often used as the value type for vtkm::cont::ArrayHandle has a number of components that must be defined at
compile time.

This is a problem in cases where the size of a vector object cannot be determined at compile time. One class to help
alleviate this problem is vtkm::cont::ArrayHandleRuntimeVec. This array handle stores data in the same way as
vtkm::cont::ArrayHandleBasic with a vtkm::Vec value type, but the size of the Vec can be set at runtime.

template<typename ComponentType>

class ArrayHandleRuntimeVec : public
vtkm::cont::ArrayHandle<vtkm::VecFromPortal<ArrayHandleBasic<ComponentType>::WritePortalType>,
vtkm::cont::StorageTagRuntimeVec>

Fancy array handle for a basic array with runtime selected vec size.

It is sometimes the case that you need to create an array of Vecs where the number of components is not known
until runtime. This is problematic for normal ArrayHandles because you have to specify the size of the Vecs
as a template parameter at compile time. ArrayHandleRuntimeVec can be used in this case.

Note that caution should be used with ArrayHandleRuntimeVec because the size of the Vec values is not known
at compile time. Thus, the value type of this array is forced to a special VecFromPortal class that can cause
surprises if treated as a Vec. In particular, the static NUM_COMPONENTS expression does not exist. Furthermore,
new variables of type VecFromPortal cannot be created. This means that simple operators like + will not work
because they require an intermediate object to be created. (Equal operators like += do work because they are
given an existing variable to place the output.)

It is possible to provide an ArrayHandleBasic of the same component type as the underlying storage for this
array. In this case, the array will be accessed much in the same manner as ArrayHandleGroupVec.

ArrayHandleRuntimeVec also allows you to convert the array to an ArrayHandleBasic of the appropriate
Vec type (or component type). A runtime check will be performed to make sure the number of components
matches.

Public Functions

inline ArrayHandleRuntimeVec(vtkm::IdComponent numComponents, const ComponentsArrayType
&componentsArray = ComponentsArrayType{})

Construct an ArrayHandleRuntimeVec with a given number of components.

Parameters

• numComponents – The size of the Vecs stored in the array. This must be specified at the
time of construction.

• componentsArray – This optional parameter allows you to supply a basic array that holds
the components. This provides a mechanism to group consecutive values into vectors.

inline vtkm::IdComponent GetNumberOfComponents() const
Return the number of components in each vec value.

27.4. Runtime Vec Arrays 419

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

inline vtkm::cont::ArrayHandleBasic<ComponentType> GetComponentsArray() const
Return a basic array containing the components stored in this array.

The returned array is shared with this object. Modifying the contents of one array will modify the other.

template<typename ValueType>
inline void AsArrayHandleBasic(vtkm::cont::ArrayHandle<ValueType> &array) const

Converts the array to that of a basic array handle.

This method converts the ArrayHandleRuntimeVec to a simple ArrayHandleBasic. This is useful if the
ArrayHandleRuntimeVec is passed to a routine that works on an array of a specific Vec size (or scalars).
After a runtime check, the array can be converted to a typical array and used as such.

template<typename ArrayType>
inline ArrayType AsArrayHandleBasic() const

Converts the array to that of a basic array handle.

This method converts the ArrayHandleRuntimeVec to a simple ArrayHandleBasic. This is useful if the
ArrayHandleRuntimeVec is passed to a routine that works on an array of a specific Vec size (or scalars).
After a runtime check, the array can be converted to a typical array and used as such.

A vtkm::cont::ArrayHandleRuntimeVec is easily created from existing data using one of the
vtkm::cont::make_ArrayHandleRuntimeVec() functions.

template<typename T>
auto vtkm::cont::make_ArrayHandleRuntimeVec(vtkm::IdComponent numComponents, const

vtkm::cont::ArrayHandle<T , vtkm::cont::StorageTagBasic>
&componentsArray = vtkm::cont::ArrayHandle<T ,
vtkm::cont::StorageTagBasic>{})

make_ArrayHandleRuntimeVec is convenience function to generate an ArrayHandleRuntimeVec.

It takes the number of components stored in each value’s Vec, which must be specified on the con-
struction of the ArrayHandleRuntimeVec. If not specified, the number of components is set to 1.
make_ArrayHandleRuntimeVec can also optionally take an existing array of components, which will be
grouped into Vec values based on the specified number of components.

template<typename T>
auto vtkm::cont::make_ArrayHandleRuntimeVec(const vtkm::cont::ArrayHandle<T ,

vtkm::cont::StorageTagBasic> &componentsArray)
Converts a basic array handle into an ArrayHandleRuntimeVec with 1 component.

The constructed array is essentially equivalent but of a different type.

VTK-m also provides several convenience functions to convert a basic C array or std::vector to a
vtkm::cont::ArrayHandleRuntimeVec.

template<typename T>
auto vtkm::cont::make_ArrayHandleRuntimeVec(vtkm::IdComponent numComponents, const T *array,

vtkm::Id numberOfValues, vtkm::CopyFlag copy)
A convenience function for creating an ArrayHandleRuntimeVec from a standard C array.

template<typename T>
auto vtkm::cont::make_ArrayHandleRuntimeVecMove(vtkm::IdComponent numComponents, T *&array,

vtkm::Id numberOfValues,
vtkm::cont::internal::BufferInfo::Deleter deleter =
internal::SimpleArrayDeleter<T>,
vtkm::cont::internal::BufferInfo::Reallocater reallocater
= internal::SimpleArrayReallocater<T>)

420 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

A convenience function to move a user-allocated array into an ArrayHandleRuntimeVec.

The provided array pointer will be reset to nullptr. If the array was not allocated with the new[] operator, then
deleter and reallocater functions must be provided.

template<typename T, typename Allocator>
auto vtkm::cont::make_ArrayHandleRuntimeVec(vtkm::IdComponent numComponents, const std::vector<T ,

Allocator> &array, vtkm::CopyFlag copy)
A convenience function for creating an ArrayHandleRuntimeVec from an std::vector.

template<typename T, typename Allocator>
auto vtkm::cont::make_ArrayHandleRuntimeVecMove(vtkm::IdComponent numComponents, std::vector<T ,

Allocator> &&array)
Move an std::vector into an ArrayHandleRuntimeVec.

The advantage of this class is that a vtkm::cont::ArrayHandleRuntimeVec can be created in a routine that does
not know the number of components at runtime and then later retrieved as a basic vtkm::cont::ArrayHandle
with a vtkm::Vec of the correct size. This often consists of a file reader or other data ingestion creat-
ing vtkm::cont::ArrayHandleRuntimeVec objects and storing them in vtkm::cont::UnknownArrayHandle,
which is used as an array container for vtkm::cont::DataSet. Filters that then subsequently operate on the
vtkm::cont::DataSet can retrieve the data as a vtkm::cont::ArrayHandle of the appropriate vtkm::Vec size.

Example 3: Loading a data with runtime component size and using with
a static sized filter.

1 void ReadArray(std::vector<float>& data, int& numComponents);
2

3 vtkm::cont::UnknownArrayHandle LoadData()
4 {
5 // Read data from some external source where the vector size is determined at runtime.
6 std::vector<vtkm::Float32> data;
7 int numComponents;
8 ReadArray(data, numComponents);
9

10 // Resulting ArrayHandleRuntimeVec gets wrapped in an UnknownArrayHandle
11 return vtkm::cont::make_ArrayHandleRuntimeVecMove(
12 static_cast<vtkm::IdComponent>(numComponents), std::move(data));
13 }
14

15 void UseVecArray(const vtkm::cont::UnknownArrayHandle& array)
16 {
17 using ExpectedArrayType = vtkm::cont::ArrayHandle<vtkm::Vec3f_32>;
18 if (!array.CanConvert<ExpectedArrayType>())
19 {
20 throw vtkm::cont::ErrorBadType("Array unexpected type.");
21 }
22

23 ExpectedArrayType concreteArray = array.AsArrayHandle<ExpectedArrayType>();
24 // Do something with concreteArray...
25 }
26

27 void LoadAndRun()
28 {
29 // Load data in a routine that does not know component size until runtime.

(continues on next page)

27.4. Runtime Vec Arrays 421

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

30 vtkm::cont::UnknownArrayHandle array = LoadData();
31

32 // Use the data in a method that requires an array of static size.
33 // This will work as long as the `Vec` size matches correctly (3 in this case).
34 UseVecArray(array);
35 }

Did You Know?

Wrapping a basic array in a vtkm::cont::ArrayHandleRuntimeVec has a similar effect as wrapping the array in
a vtkm::cont::ArrayHandleGroupVec. The difference is in the context in which they are used. If the size of the
Vec is known at compile time and the array is going to immediately be used (such as operated on by a worklet), then
vtkm::cont::ArrayHandleGroupVec should be used. However, if the Vec size is not known or the array will be
stored in an object like vtkm::cont::UnknownArrayHandle, then vtkm::cont::ArrayHandleRuntimeVec is a
better choice.

It is also possible to get a vtkm::cont::ArrayHandleRuntimeVec from a vtkm::cont::UnknownArrayHandle
that was originally stored as a basic array. This is convenient for operations that want to operate on arrays with an
unknown Vec size.

Example 4: Using vtkm::cont::ArrayHandleRuntimeVec to get an
array regardless of the size of the contained vtkm::Vec values.

1 template<typename T>
2 void WriteData(const T* data, std::size_t size, int numComponents);
3

4 void WriteVTKmArray(const vtkm::cont::UnknownArrayHandle& array)
5 {
6 bool writeSuccess = false;
7 auto doWrite = [&](auto componentType) {
8 using ComponentType = decltype(componentType);
9 using VecArrayType = vtkm::cont::ArrayHandleRuntimeVec<ComponentType>;

10 if (array.CanConvert<VecArrayType>())
11 {
12 // Get the array as a runtime Vec.
13 VecArrayType runtimeVecArray = array.AsArrayHandle<VecArrayType>();
14

15 // Get the component array.
16 vtkm::cont::ArrayHandleBasic<ComponentType> componentArray =
17 runtimeVecArray.GetComponentsArray();
18

19 // Use the general function to write the data.
20 WriteData(componentArray.GetReadPointer(),
21 componentArray.GetNumberOfValues(),
22 runtimeVecArray.GetNumberOfComponentsFlat());
23

24 writeSuccess = true;
25 }
26 };
27

28 // Figure out the base component type, retrieve the data (regardless
(continues on next page)

422 Chapter 27. Memory Layout of Array Handles

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(continued from previous page)

29 // of vec size), and write out the data.
30 vtkm::ListForEach(doWrite, vtkm::TypeListBaseC{});
31 }

27.4. Runtime Vec Arrays 423

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

424 Chapter 27. Memory Layout of Array Handles

Part V

Core Development

425

Part VI

Appendix

427

CHAPTER

TWENTYEIGHT

ACKNOWLEDGEMENTS

28.1 Contributors

This book includes contributions from the VTK-m community including the VTK-m development team and the user
community. We would like to thank the following people for their significant contributions to this text:

Vicente Bolea, Nickolas Davis, Matthew Letter, and Nick Thompson for their help keeping the user’s guide up to
date with the VTK-m source code.

Sujin Philip, Robert Maynard, James Kress, Abhishek Yenpure, Mark Kim, and Hank Childs for their descrip-
tions of numerous filters.

Allison Vacanti for her documentation of..

David Pugmire for his documentation of..

Abhishek Yenpure and Li-Ta Lo for their documentation of locator structures..

Li-Ta Lo for his documentation of random array handles and particle density filters.

James Kress for his documentation on VTK-m’s testing classes.

Manish Mathai for his documentation of rendering features..

28.2 Funding

429

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

This project has been funded in whole or in part with Federal funds from the Department of Energy, including from
Oak Ridge National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US
Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for US government purposes.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department
of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exas-
cale ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing
imperative.

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program.

430 Chapter 28. Acknowledgements

CHAPTER

TWENTYNINE

LICENSE

Copyright (c) 2014-2023 Kitware Inc., National Technology & Engineering Solutions of Sandia, LLC (NTESS), UT-
Battelle, LLC., Los Alamos National Security, LLC., All rights reserved.

Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software.

Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National Laboratory (LANL), the U.S. Govern-
ment retains certain rights in this software.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Kitware nor the names of any contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

All product names mentioned herein are the trademarks of their respective owners.

431

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

432 Chapter 29. License

CHAPTER

THIRTY

INDEX

433

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

434 Chapter 30. Index

INDEX

Symbols
: implicit function

box, 225
__device__, 233
__host__, 233
2D

camera rendering, 186
3D

camera rendering, 187

A
actor, 19

rendering, 163
AMR
arrays, 147

AMR arrays
filter, 147

AOS, 409
argc, 35
argv, 35
array handle
basic, 235, 407
const, 245
deep copy, 243
divisor, 416
memory layout, 407
modulo, 416
offset, 416
storage, 244
stride, 416

assert
errors, 205
static, 206

azimuth
camera rendering, 188

B
background

color, 174
basic array handle, 407
blanked cell

remove, 111

box
: implicit function, 225

BUILD_SHARED_LIBS
variable, 11

C
camera
interactive rendering, 191
pinhole, 187
rendering, 176
rendering 2D, 186
rendering 3D, 187
rendering azimuth, 188
rendering clipping range, 187
rendering elevation, 188
rendering far clip plane, 187
rendering field of view, 187
rendering focal point, 187
rendering look at, 187
rendering mouse, 191
rendering near clip plane, 187
rendering pan, 185
rendering position, 187
rendering reset, 189
rendering up, 187
rendering view range, 186
rendering view up, 187
rendering zoom, 186

canvas, 19
ray tracer, 165
rendering, 165

cell, 389
derivative, 399
edge, 400
face, 402
gradient, 399
interpolation, 398
parametric coordinates, 396
point, 400
shape, 400
shape edge, 57
shape face, 57

435

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

shape point, 57
world coordinates, 396

cell average
filter, 114

cell gradients, 155
cell measures
filter, 137

cell neighborhood
worklet, 335

cell set, 39, 57
explicit, 61
permutation, 65
single type, 64
structured, 59

cell shape
tag, 389

cell traits, 393
CELL_SHAPE_EMPTY (C++ enumerator), 391
CELL_SHAPE_HEXAHEDRON (C++ enumerator), 391
CELL_SHAPE_LINE (C++ enumerator), 389
CELL_SHAPE_POLY_LINE (C++ enumerator), 389
CELL_SHAPE_POLYGON (C++ enumerator), 391
CELL_SHAPE_PYRAMID (C++ enumerator), 391
CELL_SHAPE_QUAD (C++ enumerator), 391
CELL_SHAPE_TETRA (C++ enumerator), 391
CELL_SHAPE_TRIANGLE (C++ enumerator), 389
CELL_SHAPE_VERTEX (C++ enumerator), 389
CELL_SHAPE_WEDGE (C++ enumerator), 391
clean grid

filter, 93
clip
field, 98
filter, 98, 100
implicit function, 100

clipping range
camera rendering, 187

cloud in cell
particle density, 104

CMake, 9
configuration, 9
VTK-m package, 13
VTK-m package libraries, 13
VTK-m package variables, 14
VTK-m package version, 33

CMAKE_BUILD_TYPE
variable, 11, 12

CMAKE_INSTALL_PREFIX
variable, 11

CMAKE_PREFIX_PATH
envvar, 13
variable, 13

CMakeLists.txt, 21
color
background, 174

foreground, 174
color tables
rendering, 193

command
find_package, 13, 14, 33
project, 21
target_link_libraries, 13

composite vectors
filter, 115

compression
zfp, 160

configuration
CMake, 9

connected components
cell, 95
field, 95
filter, 95
image, 95

contour
filter, 96

contouring
filter, 96

control
environment, 231, 232
modifier, 233

control environment
errors, 203

control signature, 247, 248
convert to point cloud
filter, 133

coordinate system, 39, 71
coordinate system transform
cylindrical, 116
spherical, 124

cross product
filter, 151

CUDA, 11, 233
cuda, 207
cylinder
implicit function, 223

cylindrical coordinate system transform
filter, 116

D
data set, 39
building, 39
cell set, 57
clean, 93
coordinate system, 71
field, 69
filter, 361
partitioned, 71

data set with field
filter, 364

436 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

Debug, 11
deep copy

array handle, 243
density

cloud in cell, particle, 104
filter, 101
histogram, 101
nearest grid point, particle, 103

derivative
cell, 399

determinant, 385
device adapter, 207

any, 209
id, 208
runtime tracker, 209
scoped runtime tracker, 211
tag, 207
undefined, 209

dimensionality
tag type, 281

divisor
array handle, 416

dot product
filter, 153

E
edge, 400
cell shape, 57

elevation
camera rendering, 188
filter, 121

entity extraction
filter, 106

environment, 231, 232
control, 231, 232
execution, 231, 232

envvar
CMAKE_PREFIX_PATH, 13

error codes, 306
error handling

worklet, 367
errors

assert, 205
control environment, 203
execution environment, 367

execution
environment, 231, 232
modifier, 233

execution environment
errors, 367

execution signature, 247, 248
explicit cell set, 61

single type, 64
explicit mesh, 45

connectivity, 45
offsets, 45
shapes, 45

exploded view, 133
export macro
filter, 356

external faces
filter, 106

extract geometry
filter, 107

extract points
filter, 108

extract structured
filter, 110

F
face, 402
cell shape, 57
external, 106

far clip plane
camera rendering, 187

field, 39, 69, 84
clip, 98
connected components, 95
filter, 356
range, 70

field conversion
filter, 114

field map
worklet, 317, 318

field of view
camera rendering, 187

field to colors
filter, 116

field transform
filter, 115

fields
filter, 84
filter input, 85
filter passing, 86

file I/O, 77
read, 18, 77
write, 79

filter, 18, 83, 231
AMR arrays, 147
cell average, 114
cell measures, 137
clean grid, 93
clip, 98, 100
composite vectors, 115
compression;, 160
connected components, 95
contour, 96
contouring, 96

Index 437

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

convert to point cloud, 133
cross product, 151
cylindrical coordinate system transform,

116
data set, 361
data set with field, 364
density, 101
dot product, 153
elevation, 121
entity extraction, 106
export macro, 356
external faces, 106
extract geometry, 107
extract points, 108
extract structured, 110
field, 356
field conversion, 114
field to colors, 116
field transform, 115
fields, 84
FTLE, 130
generate ids, 119
ghost cell, 111
ghost cell classification, 139
gradients, 155
histogram, 101
histogram sampling, 149
implementation, 253, 355
input fields, 85
isosurface, 96
Lagrangian coherent structures, 130
log, 120
merge data sets, 148
mesh quality, 139
passing fields, 86
pathlines, 128
point average, 115
point elevation, 121
point transform, 122
probe, 150
shrink, 133
slice, 98
spherical coordinate system transform,

124
split sharp edges, 134
stream surface, 129
streamlines, 127
surface normals, 157
surface simplification, 136
tetrahedralize, 135
threshold, 112
transform, 122
triangulate, 135
tube, 135

using cells, 359
vector magnitude, 159
vertex clustering, 136
warp, 124
zfp, 160

find_package
command, 13, 14, 33

finite time Lyapunov exponent, see FTLE
flow, 126
pathlines, 128
stream surface, 129
streamlines, 127

focal point
camera rendering, 187

foreground
color, 174

frustum
implicit function, 226

FTLE
filter, 130

function modifier, 233
function types, 248
functions
implicit, 219

functor, 231

G
general
implicit function, 227

generate ids
filter, 119

geometry refinement, 132
ghost cell
classify, 139
filter, 111
remove, 111

ghost cell classification
filter, 139

git, 9
gradient
cell, 399

gradients
filter, 155

H
histogram, 351
density, 101
filter, 101

histogram sampling
filter, 149

I
I/O, 77
id

438 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

device adapter, 208
identity
matrix, 385

image, 40
connected components, 95

implementation
filter, 355

implicit function, 219
clip, 100
cylinder, 223
frustum, 226
general, 227
plane, 219
sphere, 222

initialization, 17, 35
input
fields, filter, 85

input domain, 247, 249
Intel Threading Building Blocks, see TBB, 207
interactive

rendering, 190
rendering camera, 191
rendering OpenGL, 190

interpolation
cell, 398

interval volume, 98
inverse

matrix, 385
isosurface
filter, 96

isovolume, 98

K
kernel, 231
Kokkos, 208
kokkos, 11

L
Lagrangian coherent structures

filter, 130
LCS, see Lagrangian coherent structures
less, 286
level of detail, 136
libraries

CMake VTK-m package, 13
linear system, 386
lists, 288

type, 289
LOD, 136
log

filter, 120
logging, 309
initialization, 309
levels, 309

loguru, 309
look at
camera rendering, 187

M
magnitude, 159
map, 317
map field, 318
mapper, 19
rendering, 167

math, 369
matrix, 384
determinant, 385
identity, 385
inverse, 385
transpose, 386

merge data sets
filter, 148

mesh information, 137
quality, 139

mesh quality
filter, 139

meshless data, 133
metaprogramming, 288
method modifier, 233
modifier
control, 233
execution, 233

modulo
array handle, 416

mouse
camera rendering, 191
pan, 192
rotation, 191
zoom, 193

MPI, 11
multi-block, 147
multiple components
tag vector, 285

N
namespace, 232
near clip plane
camera rendering, 187

nearest grid point
particle density, 103

neighborhood
worklet, 331

Newton's method, 386
normals, 157
numeric
tag type, 281

Index 439

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

O
offset

array handle, 416
OpenGL

interactive rendering, 190
OpenMP, 11, 207

P
packages, 232
pan

camera rendering, 185
mouse, 192
rendering, 192

parametric coordinates
cell, 396

particle
density cloud in cell, 104
density nearest grid point, 103

partitioned data set, 71
passing
fields, filter, 86

pathlines
filter, 128

permutation cell set, 65
pinhole
camera, 187

plane
implicit function, 219

point, 400
cell shape, 57

point average
filter, 115

point elevation
filter, 121

point gradients, 155
point neighborhood

worklet, 317, 332
point transform

filter, 122
position
camera rendering, 187

probe
filter, 150

project
command, 21

pseudocolor, 193

R
range

field, 70
ray tracer

canvas, 165
read file, 18, 77

rectilinear grid, 42
reduce by key

worklet, 317, 345
regular grid, 40
Release, 11
rendering, 19, 163

2D, camera, 186
3D, camera, 187
actor, 163
azimuth, camera, 188
camera, 176
camera, interactive, 191
canvas, 165
clipping range, camera, 187
color tables, 193
elevation, camera, 188
far clip plane, camera, 187
field of view, camera, 187
focal point, camera, 187
interactive, 190
look at, camera, 187
mapper, 167
mouse, camera, 191
near clip plane, camera, 187
OpenGL, interactive, 190
pan, 192
pan, camera, 185
position, camera, 187
reset, camera, 189
rotation, 191
scene, 164
up, camera, 187
view, 172
view range, camera, 186
view up, camera, 187
wireframe, 176
zoom, 193
zoom, camera, 186

reset
camera rendering, 189

rotation
mouse, 191
rendering, 191

runtime device tracker, 209
scoped, 211

S
scene, 19
rendering, 164

scoped device adapter, 211
serial, 207
shape
cell, 400
edge, 400

440 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

edge, cell, 57
face, 402
face, cell, 57
point, cell, 57
tag, 389

shrink
filter, 133

signature, 248
control, 247, 248
execution, 247, 248
tags, 248

single type cell set, 64
size_t, 26
slice

filter, 98
SOA, 409
sphere
implicit function, 222

spherical coordinate system transform
filter, 124

split sharp edges
filter, 134

static
tag vector, 285

static assert, 206
std::size_t, 26
std::vector, 241
storage

array handle, 244
stream surface

filter, 129
streamlines
filter, 127

stride
array handle, 416

structured cell set, 59
surface normals

filter, 157
surface simplification
filter, 136

T
tag, 280

cell shape, 389
device adapter, 207
shape, 389
type dimensionality, 281
type numeric, 281
vector multiple components, 285
vector static, 285

target_link_libraries
command, 13

TBB, 11, 207
template metaprogramming, 288

tetrahedralize
filter, 135

thread name, 309
threshold
filter, 112

timer, 215
topology map
worklet, 317

traits, 280
type, 280
vector, 283

transform
filter, 122

transpose
matrix, 386

triangulate
filter, 135

tube
filter, 135

type
dimensionality, tag, 281
lists, 289
numeric, tag, 281
traits, 280

U
uniform grid, 40
unstructured grid, 45
up
camera rendering, 187

using cells
filter, 359

V
variable
BUILD_SHARED_LIBS, 11
CMAKE_BUILD_TYPE, 11, 12
CMAKE_INSTALL_PREFIX, 11
CMAKE_PREFIX_PATH, 13
vtkm::cont, 13
vtkm::filter, 13, 14
vtkm::filter_contour, 14
vtkm::filter_field_transform, 14
vtkm::io, 14
vtkm::rendering, 14
vtkm::source, 14
VTKm_ENABLE_BENCHMARKS, 11
VTKm_ENABLE_CUDA, 11, 14
VTKm_ENABLE_EXAMPLES, 11
VTKm_ENABLE_KOKKOS, 11
VTKm_ENABLE_Kokkos, 15
VTKm_ENABLE_MPI, 11, 15
VTKm_ENABLE_OPENMP, 11, 15
VTKm_ENABLE_RENDERING, 11, 14, 15

Index 441

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

VTKm_ENABLE_TBB, 11, 15
VTKm_ENABLE_TESTING, 11
VTKm_ENABLE_TUTORIALS, 11
VTKm_FOUND, 14
VTKm_USE_64BIT_IDS, 11, 26
VTKm_USE_DOUBLE_PRECISION, 11, 26, 27
VTKm_VERSION, 14, 33
VTKm_VERSION_FULL, 14, 33
VTKm_VERSION_MAJOR, 14, 33
VTKm_VERSION_MINOR, 14, 33
VTKm_VERSION_PATCH, 14, 33

variables
CMake VTK-m package, 14

Vec-like, 267, 283
vector, 241

multiple components, tag, 285
static, tag, 285
traits, 283

vector analysis, 151, 382
vector magnitude
filter, 159

version, 33
CMake VTK-m package, 33
macro, 33

vertex clustering
filter, 136

view, 19
rendering, 172

view range
camera rendering, 186

view up
camera rendering, 187

visit cells
worklet, 317, 322

visit points
worklet, 317, 327

VTK-m package
CMake, 13
libraries, CMake, 13
variables, CMake, 14
version, CMake, 33

vtkm::Abs (C++ function), 377
vtkm::ACos (C++ function), 378
vtkm::ACosH (C++ function), 378
vtkm::Apply (C++ function), 304
vtkm::ASin (C++ function), 378
vtkm::ASinH (C++ function), 378
vtkm::ATan (C++ function), 379
vtkm::ATan2 (C++ function), 379
vtkm::ATanH (C++ function), 379
vtkm::Bounds (C++ struct), 273
vtkm::Bounds::Area (C++ function), 274
vtkm::Bounds::Bounds (C++ function), 273
vtkm::Bounds::Center (C++ function), 274

vtkm::Bounds::Contains (C++ function), 273
vtkm::Bounds::Include (C++ function), 274
vtkm::Bounds::Intersection (C++ function), 274
vtkm::Bounds::IsNonEmpty (C++ function), 273
vtkm::Bounds::MaxCorner (C++ function), 274
vtkm::Bounds::MinCorner (C++ function), 274
vtkm::Bounds::operator+ (C++ function), 274
vtkm::Bounds::Union (C++ function), 274
vtkm::Bounds::Volume (C++ function), 273
vtkm::Bounds::X (C++ member), 275
vtkm::Bounds::Y (C++ member), 275
vtkm::Bounds::Z (C++ member), 275
vtkm::Box (C++ class), 225
vtkm::Box::Box (C++ function), 225
vtkm::Box::GetBounds (C++ function), 226
vtkm::Box::GetMaxPoint (C++ function), 225
vtkm::Box::GetMinPoint (C++ function), 225
vtkm::Box::Gradient (C++ function), 226
vtkm::Box::SetBounds (C++ function), 226
vtkm::Box::SetMaxPoint (C++ function), 225
vtkm::Box::SetMinPoint (C++ function), 225
vtkm::Box::Value (C++ function), 226
vtkm::Cbrt (C++ function), 373
vtkm::Ceil (C++ function), 375, 376
vtkm::CellShapeIdToTag (C++ struct), 392
vtkm::CellShapeTagEmpty (C++ struct), 391
vtkm::CellShapeTagGeneric (C++ struct), 392
vtkm::CellShapeTagGeneric::Id (C++ member),

392
vtkm::CellShapeTagHexahedron (C++ struct), 391
vtkm::CellShapeTagLine (C++ struct), 389
vtkm::CellShapeTagPolygon (C++ struct), 391
vtkm::CellShapeTagPolyLine (C++ struct), 389
vtkm::CellShapeTagPyramid (C++ struct), 391
vtkm::CellShapeTagQuad (C++ struct), 391
vtkm::CellShapeTagTetra (C++ struct), 391
vtkm::CellShapeTagTriangle (C++ struct), 389
vtkm::CellShapeTagVertex (C++ struct), 389
vtkm::CellShapeTagWedge (C++ struct), 391
vtkm::CellTopologicalDimensionsTag (C++

struct), 394
vtkm::CellTraits (C++ struct), 393
vtkm::CellTraits::IsSizeFixed (C++ type), 394
vtkm::CellTraits::NUM_POINTS (C++ member), 394
vtkm::CellTraits::TOPOLOGICAL_DIMENSIONS

(C++ member), 394
vtkm::CellTraits::TopologicalDimensionsTag

(C++ type), 394
vtkm::CellTraitsTagSizeFixed (C++ struct), 394
vtkm::CellTraitsTagSizeVariable (C++ struct),

394
vtkm::cont

variable, 13
vtkm::cont::ArrayCopy (C++ function), 244

442 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::ArrayExtractComponent (C++ func-
tion), 417

vtkm::cont::ArrayHandle (C++ class), 235
vtkm::cont::ArrayHandle::~ArrayHandle (C++

function), 236
vtkm::cont::ArrayHandle::Allocate (C++ func-

tion), 237
vtkm::cont::ArrayHandle::AllocateAndFill

(C++ function), 238
vtkm::cont::ArrayHandle::ArrayHandle (C++

function), 236
vtkm::cont::ArrayHandle::DeepCopyFrom (C++

function), 240
vtkm::cont::ArrayHandle::Enqueue (C++ func-

tion), 240
vtkm::cont::ArrayHandle::Fill (C++ function),

238
vtkm::cont::ArrayHandle::GetBuffers (C++

function), 240
vtkm::cont::ArrayHandle::GetNumberOfComponentsFlat

(C++ function), 237
vtkm::cont::ArrayHandle::GetNumberOfValues

(C++ function), 237
vtkm::cont::ArrayHandle::GetStorage (C++

function), 236
vtkm::cont::ArrayHandle::IsOnDevice (C++

function), 239
vtkm::cont::ArrayHandle::IsOnHost (C++ func-

tion), 239
vtkm::cont::ArrayHandle::operator= (C++ func-

tion), 236
vtkm::cont::ArrayHandle::operator== (C++

function), 236
vtkm::cont::ArrayHandle::PrepareForInPlace

(C++ function), 239
vtkm::cont::ArrayHandle::PrepareForInput

(C++ function), 239
vtkm::cont::ArrayHandle::PrepareForOutput

(C++ function), 239
vtkm::cont::ArrayHandle::ReadPortal (C++

function), 236
vtkm::cont::ArrayHandle::ReleaseResources

(C++ function), 239
vtkm::cont::ArrayHandle::ReleaseResourcesExecution

(C++ function), 238
vtkm::cont::ArrayHandle::SyncControlArray

(C++ function), 239
vtkm::cont::ArrayHandle::WritePortal (C++

function), 237
vtkm::cont::ArrayHandleBasic (C++ class), 407
vtkm::cont::ArrayHandleBasic::GetReadPointer

(C++ function), 407, 408
vtkm::cont::ArrayHandleBasic::GetWritePointer

(C++ function), 407, 408

vtkm::cont::ArrayHandleRuntimeVec (C++ class),
419

vtkm::cont::ArrayHandleRuntimeVec::ArrayHandleRuntimeVec
(C++ function), 419

vtkm::cont::ArrayHandleRuntimeVec::AsArrayHandleBasic
(C++ function), 420

vtkm::cont::ArrayHandleRuntimeVec::GetComponentsArray
(C++ function), 419

vtkm::cont::ArrayHandleRuntimeVec::GetNumberOfComponents
(C++ function), 419

vtkm::cont::ArrayHandleSOA (C++ class), 409
vtkm::cont::ArrayHandleSOA::ArrayHandleSOA

(C++ function), 409–411
vtkm::cont::ArrayHandleSOA::GetArray (C++

function), 411
vtkm::cont::ArrayHandleSOA::SetArray (C++

function), 411
vtkm::cont::ArrayHandleStride (C++ class), 416
vtkm::cont::ArrayHandleStride::ArrayHandleStride

(C++ function), 417
vtkm::cont::ArrayHandleStride::GetBasicArray

(C++ function), 417
vtkm::cont::ArrayHandleStride::GetDivisor

(C++ function), 417
vtkm::cont::ArrayHandleStride::GetModulo

(C++ function), 417
vtkm::cont::ArrayHandleStride::GetOffset

(C++ function), 417
vtkm::cont::ArrayHandleStride::GetStride

(C++ function), 417
vtkm::cont::BoundsCompute (C++ function), 73, 74
vtkm::cont::BoundsGlobalCompute (C++ function),

74
vtkm::cont::CellSet (C++ class), 57
vtkm::cont::CellSet::DeepCopy (C++ function), 58
vtkm::cont::CellSet::GetCellPointIds (C++

function), 58
vtkm::cont::CellSet::GetCellShape (C++ func-

tion), 58
vtkm::cont::CellSet::GetNumberOfCells (C++

function), 58
vtkm::cont::CellSet::GetNumberOfPoints (C++

function), 58
vtkm::cont::CellSet::GetNumberOfPointsInCell

(C++ function), 58
vtkm::cont::CellSet::NewInstance (C++ func-

tion), 58
vtkm::cont::CellSet::PrintSummary (C++ func-

tion), 58
vtkm::cont::CellSet::ReleaseResourcesExecution

(C++ function), 58
vtkm::cont::CellSetExplicit (C++ class), 61
vtkm::cont::CellSetExplicit::AddCell (C++

function), 62

Index 443

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::CellSetExplicit::CompleteAddingCells
(C++ function), 62

vtkm::cont::CellSetExplicit::DeepCopy (C++
function), 61

vtkm::cont::CellSetExplicit::Fill (C++ func-
tion), 62

vtkm::cont::CellSetExplicit::GetCellPointIds
(C++ function), 61

vtkm::cont::CellSetExplicit::GetCellShape
(C++ function), 61

vtkm::cont::CellSetExplicit::GetNumberOfCells
(C++ function), 61

vtkm::cont::CellSetExplicit::GetNumberOfPoints
(C++ function), 61

vtkm::cont::CellSetExplicit::GetNumberOfPointsInCell
(C++ function), 61

vtkm::cont::CellSetExplicit::NewInstance
(C++ function), 61

vtkm::cont::CellSetExplicit::PrepareToAddCells
(C++ function), 61

vtkm::cont::CellSetExplicit::PrintSummary
(C++ function), 61

vtkm::cont::CellSetExplicit::ReleaseResourcesExecution
(C++ function), 61

vtkm::cont::CellSetExtrude (C++ class), 67
vtkm::cont::CellSetExtrude::DeepCopy (C++

function), 68
vtkm::cont::CellSetExtrude::GetCellPointIds

(C++ function), 68
vtkm::cont::CellSetExtrude::GetCellShape

(C++ function), 67
vtkm::cont::CellSetExtrude::GetNumberOfCells

(C++ function), 67
vtkm::cont::CellSetExtrude::GetNumberOfPoints

(C++ function), 67
vtkm::cont::CellSetExtrude::GetNumberOfPointsInCell

(C++ function), 67
vtkm::cont::CellSetExtrude::NewInstance

(C++ function), 68
vtkm::cont::CellSetExtrude::PrintSummary

(C++ function), 68
vtkm::cont::CellSetExtrude::ReleaseResourcesExecution

(C++ function), 68
vtkm::cont::CellSetPermutation (C++ class), 65
vtkm::cont::CellSetPermutation::CellSetPermutation

(C++ function), 66
vtkm::cont::CellSetPermutation::DeepCopy

(C++ function), 66
vtkm::cont::CellSetPermutation::Fill (C++

function), 66
vtkm::cont::CellSetPermutation::GetCellPointIds

(C++ function), 66
vtkm::cont::CellSetPermutation::GetCellShape

(C++ function), 66

vtkm::cont::CellSetPermutation::GetFullCellSet
(C++ function), 66

vtkm::cont::CellSetPermutation::GetNumberOfCells
(C++ function), 66

vtkm::cont::CellSetPermutation::GetNumberOfPoints
(C++ function), 66

vtkm::cont::CellSetPermutation::GetNumberOfPointsInCell
(C++ function), 66

vtkm::cont::CellSetPermutation::GetValidCellIds
(C++ function), 66

vtkm::cont::CellSetPermutation::NewInstance
(C++ function), 66

vtkm::cont::CellSetPermutation::PrintSummary
(C++ function), 66

vtkm::cont::CellSetPermutation::ReleaseResourcesExecution
(C++ function), 66

vtkm::cont::CellSetSingleType (C++ class), 64
vtkm::cont::CellSetSingleType::AddCell (C++

function), 65
vtkm::cont::CellSetSingleType::CompleteAddingCells

(C++ function), 65
vtkm::cont::CellSetSingleType::DeepCopy

(C++ function), 65
vtkm::cont::CellSetSingleType::Fill (C++

function), 65
vtkm::cont::CellSetSingleType::GetCellShape

(C++ function), 65
vtkm::cont::CellSetSingleType::NewInstance

(C++ function), 65
vtkm::cont::CellSetSingleType::PrepareToAddCells

(C++ function), 65
vtkm::cont::CellSetSingleType::PrintSummary

(C++ function), 65
vtkm::cont::CellSetStructured (C++ class), 59
vtkm::cont::CellSetStructured::DeepCopy

(C++ function), 59
vtkm::cont::CellSetStructured::GetCellPointIds

(C++ function), 59
vtkm::cont::CellSetStructured::GetCellShape

(C++ function), 59
vtkm::cont::CellSetStructured::GetNumberOfCells

(C++ function), 59
vtkm::cont::CellSetStructured::GetNumberOfPoints

(C++ function), 59
vtkm::cont::CellSetStructured::GetNumberOfPointsInCell

(C++ function), 59
vtkm::cont::CellSetStructured::GetPointDimensions

(C++ function), 59
vtkm::cont::CellSetStructured::NewInstance

(C++ function), 59
vtkm::cont::CellSetStructured::PrintSummary

(C++ function), 59
vtkm::cont::CellSetStructured::ReleaseResourcesExecution

(C++ function), 59

444 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::CellSetStructured::SetPointDimensions
(C++ function), 59

vtkm::cont::ColorTable (C++ class), 193
vtkm::cont::ColorTable::AddPoint (C++ func-

tion), 196
vtkm::cont::ColorTable::AddPointAlpha (C++

function), 197
vtkm::cont::ColorTable::AddPointHSV (C++

function), 196
vtkm::cont::ColorTable::AddSegment (C++ func-

tion), 196
vtkm::cont::ColorTable::AddSegmentAlpha

(C++ function), 197
vtkm::cont::ColorTable::AddSegmentHSV (C++

function), 196
vtkm::cont::ColorTable::Clear (C++ function),

196
vtkm::cont::ColorTable::ClearAlpha (C++ func-

tion), 196
vtkm::cont::ColorTable::ClearColors (C++

function), 196
vtkm::cont::ColorTable::ColorTable (C++ func-

tion), 194, 195
vtkm::cont::ColorTable::FillColorTableFromDataPointer

(C++ function), 198
vtkm::cont::ColorTable::FillOpacityTableFromDataPointer

(C++ function), 198, 199
vtkm::cont::ColorTable::GetModifiedCount

(C++ function), 200
vtkm::cont::ColorTable::GetNumberOfPoints

(C++ function), 197
vtkm::cont::ColorTable::GetNumberOfPointsAlpha

(C++ function), 198
vtkm::cont::ColorTable::GetPoint (C++ func-

tion), 197
vtkm::cont::ColorTable::GetPointAlpha (C++

function), 198
vtkm::cont::ColorTable::GetPresets (C++ func-

tion), 200
vtkm::cont::ColorTable::GetRange (C++ func-

tion), 196
vtkm::cont::ColorTable::LoadPreset (C++ func-

tion), 195
vtkm::cont::ColorTable::MakeDeepCopy (C++

function), 195
vtkm::cont::ColorTable::PrepareForExecution

(C++ function), 200
vtkm::cont::ColorTable::RemovePoint (C++

function), 197
vtkm::cont::ColorTable::RemovePointAlpha

(C++ function), 198
vtkm::cont::ColorTable::RescaleToRange (C++

function), 196
vtkm::cont::ColorTable::ReverseAlpha (C++

function), 196
vtkm::cont::ColorTable::ReverseColors (C++

function), 196
vtkm::cont::ColorTable::Sample (C++ function),

199, 200
vtkm::cont::ColorTable::SetAboveRangeColor

(C++ function), 195
vtkm::cont::ColorTable::SetBelowRangeColor

(C++ function), 195
vtkm::cont::ColorTable::SetClampingOn (C++

function), 195
vtkm::cont::ColorTable::UpdatePoint (C++

function), 197
vtkm::cont::ColorTable::UpdatePointAlpha

(C++ function), 198
vtkm::cont::ConvertNumComponentsToOffsets

(C++ function), 62
vtkm::cont::CoordinateSystem (C++ class), 71
vtkm::cont::CoordinateSystem::GetBounds

(C++ function), 71
vtkm::cont::DataSet (C++ class), 39
vtkm::cont::DataSet::AddCellField (C++ func-

tion), 55, 56
vtkm::cont::DataSet::AddPointField (C++ func-

tion), 55
vtkm::cont::DataSetBuilderExplicit (C++

class), 47
vtkm::cont::DataSetBuilderExplicit::Create

(C++ function), 48–50
vtkm::cont::DataSetBuilderExplicitIterative

(C++ class), 52
vtkm::cont::DataSetBuilderExplicitIterative::AddCell

(C++ function), 53, 54
vtkm::cont::DataSetBuilderExplicitIterative::AddCellPoint

(C++ function), 54
vtkm::cont::DataSetBuilderExplicitIterative::AddPoint

(C++ function), 52, 53
vtkm::cont::DataSetBuilderExplicitIterative::Begin

(C++ function), 52
vtkm::cont::DataSetBuilderExplicitIterative::Create

(C++ function), 54
vtkm::cont::DataSetBuilderRectilinear (C++

class), 42
vtkm::cont::DataSetBuilderRectilinear::Create

(C++ function), 42–44
vtkm::cont::DataSetBuilderUniform (C++ class),

40
vtkm::cont::DataSetBuilderUniform::Create

(C++ function), 40, 41
vtkm::cont::DeviceAdapterId (C++ struct), 208
vtkm::cont::DeviceAdapterId::GetName (C++

function), 208
vtkm::cont::DeviceAdapterId::GetValue (C++

function), 208

Index 445

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::cont::DeviceAdapterId::IsValueValid
(C++ function), 208

vtkm::cont::DeviceAdapterTagAny (C++ struct),
209

vtkm::cont::DeviceAdapterTagCuda (C++ struct),
207

vtkm::cont::DeviceAdapterTagKokkos (C++
struct), 208

vtkm::cont::DeviceAdapterTagOpenMP (C++
struct), 207

vtkm::cont::DeviceAdapterTagSerial (C++
struct), 207

vtkm::cont::DeviceAdapterTagTBB (C++ struct),
207

vtkm::cont::DeviceAdapterTagUndefined (C++
struct), 209

vtkm::cont::Error (C++ class), 203
vtkm::cont::Error::GetIsDeviceIndependent

(C++ function), 204
vtkm::cont::Error::GetMessage (C++ function),

204
vtkm::cont::Error::GetStackTrace (C++ func-

tion), 204
vtkm::cont::Error::what (C++ function), 204
vtkm::cont::ErrorBadAllocation (C++ class), 204
vtkm::cont::ErrorBadDevice (C++ class), 204
vtkm::cont::ErrorBadType (C++ class), 204
vtkm::cont::ErrorBadValue (C++ class), 204
vtkm::cont::ErrorExecution (C++ class), 204
vtkm::cont::ErrorFilterExecution (C++ class),

204
vtkm::cont::ErrorInternal (C++ class), 204
vtkm::cont::ErrorUserAbort (C++ class), 204
vtkm::cont::Field (C++ class), 69
vtkm::cont::Field::Association (C++ enum), 69
vtkm::cont::Field::Association::Any (C++ enu-

merator), 69
vtkm::cont::Field::Association::Cells (C++

enumerator), 70
vtkm::cont::Field::Association::Global (C++

enumerator), 70
vtkm::cont::Field::Association::Partitions

(C++ enumerator), 70
vtkm::cont::Field::Association::Points (C++

enumerator), 70
vtkm::cont::Field::Association::WholeDataSet

(C++ enumerator), 69
vtkm::cont::Field::GetAssociation (C++ func-

tion), 69
vtkm::cont::Field::GetData (C++ function), 69
vtkm::cont::Field::GetName (C++ function), 69
vtkm::cont::Field::GetRange (C++ function), 70
vtkm::cont::Field::IsCellField (C++ function),

70

vtkm::cont::Field::IsGlobalField (C++ func-
tion), 70

vtkm::cont::Field::IsPartitionsField (C++
function), 70

vtkm::cont::Field::IsPointField (C++ function),
70

vtkm::cont::Field::IsWholeDataSetField (C++
function), 70

vtkm::cont::FieldRangeCompute (C++ function), 74
vtkm::cont::FieldRangeGlobalCompute (C++

function), 74, 75
vtkm::cont::GetHumanReadableSize (C++ func-

tion), 315
vtkm::cont::GetLogLevelName (C++ function), 311
vtkm::cont::GetLogThreadName (C++ function), 309
vtkm::cont::GetRuntimeDeviceTracker (C++

function), 210
vtkm::cont::GetSizeString (C++ function), 315
vtkm::cont::GetStackTrace (C++ function), 315
vtkm::cont::GetStderrLogLevel (C++ function),

312
vtkm::cont::Initialize (C++ function), 35
vtkm::cont::InitializeOptions (C++ enum), 36
vtkm::cont::InitializeOptions::AddHelp (C++

enumerator), 36
vtkm::cont::InitializeOptions::DefaultAnyDevice

(C++ enumerator), 36
vtkm::cont::InitializeOptions::ErrorOnBadArgument

(C++ enumerator), 36
vtkm::cont::InitializeOptions::ErrorOnBadOption

(C++ enumerator), 36
vtkm::cont::InitializeOptions::None (C++ enu-

merator), 36
vtkm::cont::InitializeOptions::RequireDevice

(C++ enumerator), 36
vtkm::cont::InitializeOptions::Strict (C++

enumerator), 37
vtkm::cont::InitializeResult (C++ struct), 35
vtkm::cont::InitializeResult::Device (C++

member), 36
vtkm::cont::InitializeResult::Usage (C++

member), 36
vtkm::cont::Invoker (C++ struct), 250
vtkm::cont::Invoker::GetDevice (C++ function),

250
vtkm::cont::Invoker::Invoker (C++ function), 250
vtkm::cont::Invoker::operator() (C++ function),

250
vtkm::cont::LogLevel (C++ enum), 310
vtkm::cont::LogLevel::Cast (C++ enumerator),

311
vtkm::cont::LogLevel::DevicesEnabled (C++

enumerator), 310
vtkm::cont::LogLevel::Error (C++ enumerator),

446 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

310
vtkm::cont::LogLevel::Fatal (C++ enumerator),

310
vtkm::cont::LogLevel::Info (C++ enumerator),

310
vtkm::cont::LogLevel::KernelLaunches (C++

enumerator), 311
vtkm::cont::LogLevel::MemCont (C++ enumera-

tor), 310
vtkm::cont::LogLevel::MemExec (C++ enumera-

tor), 310
vtkm::cont::LogLevel::MemTransfer (C++ enu-

merator), 310
vtkm::cont::LogLevel::Off (C++ enumerator), 310
vtkm::cont::LogLevel::Perf (C++ enumerator),

310
vtkm::cont::LogLevel::UserFirst (C++ enumera-

tor), 310
vtkm::cont::LogLevel::UserLast (C++ enumera-

tor), 310
vtkm::cont::LogLevel::UserVerboseFirst (C++

enumerator), 311
vtkm::cont::LogLevel::UserVerboseLast (C++

enumerator), 311
vtkm::cont::LogLevel::Warn (C++ enumerator),

310
vtkm::cont::make_ArrayHandle (C++ function),

240, 241, 243
vtkm::cont::make_ArrayHandleMove (C++ func-

tion), 243
vtkm::cont::make_ArrayHandleRuntimeVec (C++

function), 420, 421
vtkm::cont::make_ArrayHandleRuntimeVecMove

(C++ function), 420, 421
vtkm::cont::make_ArrayHandleSOA (C++ function),

412–415
vtkm::cont::make_ArrayHandleSOAMove (C++

function), 414
vtkm::cont::PartitionedDataSet (C++ class), 71
vtkm::cont::PartitionedDataSet::AddField

(C++ function), 72
vtkm::cont::PartitionedDataSet::AddGlobalField

(C++ function), 72
vtkm::cont::PartitionedDataSet::AddPartitionsField

(C++ function), 72
vtkm::cont::PartitionedDataSet::AppendPartition

(C++ function), 72
vtkm::cont::PartitionedDataSet::AppendPartitions

(C++ function), 72
vtkm::cont::PartitionedDataSet::CopyPartitions

(C++ function), 73
vtkm::cont::PartitionedDataSet::GetField

(C++ function), 73
vtkm::cont::PartitionedDataSet::GetFieldFromPartition

(C++ function), 72
vtkm::cont::PartitionedDataSet::GetGlobalField

(C++ function), 73
vtkm::cont::PartitionedDataSet::GetGlobalNumberOfPartitions

(C++ function), 72
vtkm::cont::PartitionedDataSet::GetNumberOfFields

(C++ function), 72
vtkm::cont::PartitionedDataSet::GetNumberOfPartitions

(C++ function), 72
vtkm::cont::PartitionedDataSet::GetPartition

(C++ function), 72
vtkm::cont::PartitionedDataSet::GetPartitions

(C++ function), 72
vtkm::cont::PartitionedDataSet::GetPartitionsField

(C++ function), 73
vtkm::cont::PartitionedDataSet::HasField

(C++ function), 73
vtkm::cont::PartitionedDataSet::HasGlobalField

(C++ function), 73
vtkm::cont::PartitionedDataSet::HasPartitionsField

(C++ function), 73
vtkm::cont::PartitionedDataSet::InsertPartition

(C++ function), 72
vtkm::cont::PartitionedDataSet::PartitionedDataSet

(C++ function), 72
vtkm::cont::PartitionedDataSet::ReplacePartition

(C++ function), 72
vtkm::cont::RuntimeDeviceTracker (C++ class),

210
vtkm::cont::RuntimeDeviceTracker::CanRunOn

(C++ function), 210
vtkm::cont::RuntimeDeviceTracker::ClearAbortChecker

(C++ function), 211
vtkm::cont::RuntimeDeviceTracker::CopyStateFrom

(C++ function), 211
vtkm::cont::RuntimeDeviceTracker::DisableDevice

(C++ function), 210
vtkm::cont::RuntimeDeviceTracker::ForceDevice

(C++ function), 211
vtkm::cont::RuntimeDeviceTracker::GetThreadFriendlyMemAlloc

(C++ function), 211
vtkm::cont::RuntimeDeviceTracker::PrintSummary

(C++ function), 211
vtkm::cont::RuntimeDeviceTracker::ReportAllocationFailure

(C++ function), 210
vtkm::cont::RuntimeDeviceTracker::ReportBadDeviceFailure

(C++ function), 210
vtkm::cont::RuntimeDeviceTracker::Reset

(C++ function), 210
vtkm::cont::RuntimeDeviceTracker::ResetDevice

(C++ function), 210
vtkm::cont::RuntimeDeviceTracker::SetAbortChecker

(C++ function), 211
vtkm::cont::RuntimeDeviceTracker::SetThreadFriendlyMemAlloc

Index 447

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(C++ function), 211
vtkm::cont::RuntimeDeviceTrackerMode (C++

enum), 213
vtkm::cont::RuntimeDeviceTrackerMode::Disable

(C++ enumerator), 213
vtkm::cont::RuntimeDeviceTrackerMode::Enable

(C++ enumerator), 213
vtkm::cont::RuntimeDeviceTrackerMode::Force

(C++ enumerator), 213
vtkm::cont::ScopedRuntimeDeviceTracker (C++

class), 211
vtkm::cont::ScopedRuntimeDeviceTracker::~ScopedRuntimeDeviceTracker

(C++ function), 212
vtkm::cont::ScopedRuntimeDeviceTracker::ScopedRuntimeDeviceTracker

(C++ function), 212
vtkm::cont::SetLogLevelName (C++ function), 311
vtkm::cont::SetLogThreadName (C++ function), 309
vtkm::cont::SetStderrLogLevel (C++ function),

311, 312
vtkm::cont::Timer (C++ class), 216
vtkm::cont::Timer::GetDevice (C++ function), 217
vtkm::cont::Timer::GetElapsedTime (C++ func-

tion), 217
vtkm::cont::Timer::Ready (C++ function), 217
vtkm::cont::Timer::Reset (C++ function), 216
vtkm::cont::Timer::Start (C++ function), 216
vtkm::cont::Timer::Started (C++ function), 216
vtkm::cont::Timer::Stop (C++ function), 216
vtkm::cont::Timer::Stopped (C++ function), 217
vtkm::cont::Timer::Synchronize (C++ function),

217
vtkm::cont::TypeToString (C++ function), 315
vtkm::CopyFlag (C++ enum), 241
vtkm::CopyFlag::Off (C++ enumerator), 241
vtkm::CopyFlag::On (C++ enumerator), 241
vtkm::CopySign (C++ function), 376
vtkm::Cos (C++ function), 379
vtkm::CosH (C++ function), 379, 380
vtkm::Cross (C++ function), 382
vtkm::Cylinder (C++ class), 223
vtkm::Cylinder::Cylinder (C++ function), 224
vtkm::Cylinder::Gradient (C++ function), 224
vtkm::Cylinder::SetAxis (C++ function), 224
vtkm::Cylinder::SetCenter (C++ function), 224
vtkm::Cylinder::SetRadius (C++ function), 224
vtkm::Cylinder::Value (C++ function), 224
vtkm::Epsilon (C++ function), 376
vtkm::Epsilon32 (C++ function), 376
vtkm::Epsilon64 (C++ function), 376
vtkm::ErrorCode (C++ enum), 306
vtkm::ErrorCode::CellNotFound (C++ enumera-

tor), 307
vtkm::ErrorCode::DegenerateCellDetected

(C++ enumerator), 307

vtkm::ErrorCode::InvalidCellMetric (C++ enu-
merator), 306

vtkm::ErrorCode::InvalidEdgeId (C++ enumera-
tor), 306

vtkm::ErrorCode::InvalidFaceId (C++ enumera-
tor), 307

vtkm::ErrorCode::InvalidNumberOfPoints (C++
enumerator), 306

vtkm::ErrorCode::InvalidPointId (C++ enumera-
tor), 306

vtkm::ErrorCode::InvalidShapeId (C++ enumera-
tor), 306

vtkm::ErrorCode::MalformedCellDetected (C++
enumerator), 307

vtkm::ErrorCode::MatrixFactorizationFailed
(C++ enumerator), 307

vtkm::ErrorCode::OperationOnEmptyCell (C++
enumerator), 307

vtkm::ErrorCode::SolutionDidNotConverge
(C++ enumerator), 307

vtkm::ErrorCode::Success (C++ enumerator), 306
vtkm::ErrorCode::UnknownError (C++ enumera-

tor), 307
vtkm::ErrorCode::WrongShapeIdForTagType

(C++ enumerator), 306
vtkm::ErrorString (C++ function), 307
vtkm::exec::BoundaryState (C++ struct), 340
vtkm::exec::BoundaryState::ClampNeighborIndex

(C++ function), 342
vtkm::exec::BoundaryState::GetCenterIndex

(C++ function), 341
vtkm::exec::BoundaryState::IJK (C++ member),

343
vtkm::exec::BoundaryState::IsNeighborInBoundary

(C++ function), 341
vtkm::exec::BoundaryState::IsNeighborInXBoundary

(C++ function), 341
vtkm::exec::BoundaryState::IsNeighborInYBoundary

(C++ function), 341
vtkm::exec::BoundaryState::IsNeighborInZBoundary

(C++ function), 341
vtkm::exec::BoundaryState::IsRadiusInBoundary

(C++ function), 341
vtkm::exec::BoundaryState::IsRadiusInXBoundary

(C++ function), 340
vtkm::exec::BoundaryState::IsRadiusInYBoundary

(C++ function), 340
vtkm::exec::BoundaryState::IsRadiusInZBoundary

(C++ function), 341
vtkm::exec::BoundaryState::MaxNeighborIndices

(C++ function), 342
vtkm::exec::BoundaryState::MinNeighborIndices

(C++ function), 341
vtkm::exec::BoundaryState::NeighborIndexToFlatIndex

448 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(C++ function), 343
vtkm::exec::BoundaryState::NeighborIndexToFlatIndexClamp

(C++ function), 342, 343
vtkm::exec::BoundaryState::NeighborIndexToFullIndex

(C++ function), 342
vtkm::exec::BoundaryState::NeighborIndexToFullIndexClamp

(C++ function), 342
vtkm::exec::BoundaryState::PointDimensions

(C++ member), 343
vtkm::exec::CellEdgeCanonicalId (C++ function),

400
vtkm::exec::CellEdgeLocalIndex (C++ function),

400
vtkm::exec::CellEdgeNumberOfEdges (C++ func-

tion), 400
vtkm::exec::CellFaceCanonicalId (C++ function),

403
vtkm::exec::CellFaceLocalIndex (C++ function),

403
vtkm::exec::CellFaceNumberOfFaces (C++ func-

tion), 402
vtkm::exec::CellFaceNumberOfPoints (C++ func-

tion), 402
vtkm::exec::CellFaceShape (C++ function), 403
vtkm::exec::CellInterpolate (C++ function), 398
vtkm::exec::FieldNeighborhood (C++ struct), 338
vtkm::exec::FieldNeighborhood::Boundary

(C++ member), 340
vtkm::exec::FieldNeighborhood::Get (C++ func-

tion), 339
vtkm::exec::FieldNeighborhood::GetUnchecked

(C++ function), 339
vtkm::exec::FieldNeighborhood::Portal (C++

member), 340
vtkm::exec::ParametricCoordinatesCenter

(C++ function), 396
vtkm::exec::ParametricCoordinatesPoint (C++

function), 396
vtkm::exec::ParametricCoordinatesToWorldCoordinates

(C++ function), 396
vtkm::exec::WorldCoordinatesToParametricCoordinates

(C++ function), 397
vtkm::Exp (C++ function), 369
vtkm::Exp10 (C++ function), 369, 370
vtkm::Exp2 (C++ function), 370
vtkm::ExpM1 (C++ function), 370
vtkm::filter
variable, 13, 14

vtkm::filter::clean_grid::CleanGrid (C++
class), 93

vtkm::filter::clean_grid::CleanGrid::GetCompactPointFields
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::GetFastMerge
(C++ function), 95

vtkm::filter::clean_grid::CleanGrid::GetMergePoints
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::GetRemoveDegenerateCells
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::GetTolerance
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::GetToleranceIsAbsolute
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::SetCompactPointFields
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::SetFastMerge
(C++ function), 95

vtkm::filter::clean_grid::CleanGrid::SetMergePoints
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::SetRemoveDegenerateCells
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::SetTolerance
(C++ function), 94

vtkm::filter::clean_grid::CleanGrid::SetToleranceIsAbsolute
(C++ function), 94

vtkm::filter::connected_components::CellSetConnectivity
(C++ class), 95

vtkm::filter::connected_components::ImageConnectivity
(C++ class), 95

vtkm::filter::contour::AbstractContour::GetComputeFastNormals
(C++ function), 97

vtkm::filter::contour::AbstractContour::GetGenerateNormals
(C++ function), 97

vtkm::filter::contour::AbstractContour::GetIsoValue
(C++ function), 96

vtkm::filter::contour::AbstractContour::GetMergeDuplicatePoints
(C++ function), 97

vtkm::filter::contour::AbstractContour::GetNormalArrayName
(C++ function), 97

vtkm::filter::contour::AbstractContour::SetComputeFastNormals
(C++ function), 97

vtkm::filter::contour::AbstractContour::SetGenerateNormals
(C++ function), 96

vtkm::filter::contour::AbstractContour::SetIsoValue
(C++ function), 96

vtkm::filter::contour::AbstractContour::SetIsoValues
(C++ function), 96

vtkm::filter::contour::AbstractContour::SetMergeDuplicatePoints
(C++ function), 97

vtkm::filter::contour::AbstractContour::SetNormalArrayName
(C++ function), 97

vtkm::filter::contour::ClipWithField (C++
class), 99

vtkm::filter::contour::ClipWithField::GetClipValue
(C++ function), 99

vtkm::filter::contour::ClipWithField::GetInvertClip
(C++ function), 99

vtkm::filter::contour::ClipWithField::SetClipValue
(C++ function), 99

Index 449

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::contour::ClipWithField::SetInvertClip
(C++ function), 99

vtkm::filter::contour::ClipWithImplicitFunction
(C++ class), 100

vtkm::filter::contour::ClipWithImplicitFunction::GetImplicitFunction
(C++ function), 100

vtkm::filter::contour::ClipWithImplicitFunction::SetImplicitFunction
(C++ function), 100

vtkm::filter::contour::ClipWithImplicitFunction::SetInvertClip
(C++ function), 100

vtkm::filter::contour::Contour (C++ class), 96
vtkm::filter::contour::Slice (C++ class), 98
vtkm::filter::contour::Slice::GetImplicitFunction

(C++ function), 98
vtkm::filter::contour::Slice::SetImplicitFunction

(C++ function), 98
vtkm::filter::density_estimate::Histogram

(C++ class), 101
vtkm::filter::density_estimate::Histogram::GetBinDelta

(C++ function), 102
vtkm::filter::density_estimate::Histogram::GetComputedRange

(C++ function), 102
vtkm::filter::density_estimate::Histogram::GetNumberOfBins

(C++ function), 102
vtkm::filter::density_estimate::Histogram::GetRange

(C++ function), 102
vtkm::filter::density_estimate::Histogram::SetNumberOfBins

(C++ function), 102
vtkm::filter::density_estimate::Histogram::SetRange

(C++ function), 102
vtkm::filter::density_estimate::ParticleDensityBase

(C++ class), 102
vtkm::filter::density_estimate::ParticleDensityBase::GetComputeNumberDensity

(C++ function), 102
vtkm::filter::density_estimate::ParticleDensityBase::GetDimension

(C++ function), 103
vtkm::filter::density_estimate::ParticleDensityBase::GetDivideByVolume

(C++ function), 103
vtkm::filter::density_estimate::ParticleDensityBase::GetOrigin

(C++ function), 103
vtkm::filter::density_estimate::ParticleDensityBase::GetSpacing

(C++ function), 103
vtkm::filter::density_estimate::ParticleDensityBase::SetBounds

(C++ function), 103
vtkm::filter::density_estimate::ParticleDensityBase::SetComputeNumberDensity

(C++ function), 102
vtkm::filter::density_estimate::ParticleDensityBase::SetDimension

(C++ function), 103
vtkm::filter::density_estimate::ParticleDensityBase::SetDivideByVolume

(C++ function), 102
vtkm::filter::density_estimate::ParticleDensityBase::SetOrigin

(C++ function), 103
vtkm::filter::density_estimate::ParticleDensityBase::SetSpacing

(C++ function), 103

vtkm::filter::density_estimate::ParticleDensityCloudInCell
(C++ class), 104

vtkm::filter::density_estimate::ParticleDensityNearestGridPoint
(C++ class), 103

vtkm::filter::density_estimate::Statistics
(C++ class), 105

vtkm::filter::entity_extraction::ExternalFaces
(C++ class), 106

vtkm::filter::entity_extraction::ExternalFaces::CanThread
(C++ function), 106

vtkm::filter::entity_extraction::ExternalFaces::GetCompactPoints
(C++ function), 106

vtkm::filter::entity_extraction::ExternalFaces::GetPassPolyData
(C++ function), 106

vtkm::filter::entity_extraction::ExternalFaces::SetCompactPoints
(C++ function), 106

vtkm::filter::entity_extraction::ExternalFaces::SetPassPolyData
(C++ function), 106

vtkm::filter::entity_extraction::ExtractGeometry
(C++ class), 107

vtkm::filter::entity_extraction::ExtractGeometry::ExtractBoundaryCellsOff
(C++ function), 108

vtkm::filter::entity_extraction::ExtractGeometry::ExtractBoundaryCellsOn
(C++ function), 108

vtkm::filter::entity_extraction::ExtractGeometry::ExtractInsideOff
(C++ function), 107

vtkm::filter::entity_extraction::ExtractGeometry::ExtractInsideOn
(C++ function), 107

vtkm::filter::entity_extraction::ExtractGeometry::ExtractOnlyBoundaryCellsOff
(C++ function), 108

vtkm::filter::entity_extraction::ExtractGeometry::ExtractOnlyBoundaryCellsOn
(C++ function), 108

vtkm::filter::entity_extraction::ExtractGeometry::GetExtractBoundaryCells
(C++ function), 107

vtkm::filter::entity_extraction::ExtractGeometry::GetExtractInside
(C++ function), 107

vtkm::filter::entity_extraction::ExtractGeometry::GetExtractOnlyBoundaryCells
(C++ function), 108

vtkm::filter::entity_extraction::ExtractGeometry::SetExtractBoundaryCells
(C++ function), 108

vtkm::filter::entity_extraction::ExtractGeometry::SetExtractInside
(C++ function), 107

vtkm::filter::entity_extraction::ExtractGeometry::SetExtractOnlyBoundaryCells
(C++ function), 108

vtkm::filter::entity_extraction::ExtractGeometry::SetImplicitFunction
(C++ function), 107

vtkm::filter::entity_extraction::ExtractPoints
(C++ class), 108

vtkm::filter::entity_extraction::ExtractPoints::ExtractInsideOff
(C++ function), 109

vtkm::filter::entity_extraction::ExtractPoints::ExtractInsideOn
(C++ function), 109

vtkm::filter::entity_extraction::ExtractPoints::GetCompactPoints
(C++ function), 109

450 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::entity_extraction::ExtractPoints::GetExtractInside
(C++ function), 109

vtkm::filter::entity_extraction::ExtractPoints::SetCompactPoints
(C++ function), 109

vtkm::filter::entity_extraction::ExtractPoints::SetExtractInside
(C++ function), 109

vtkm::filter::entity_extraction::ExtractPoints::SetImplicitFunction
(C++ function), 109

vtkm::filter::entity_extraction::ExtractStructured
(C++ class), 110

vtkm::filter::entity_extraction::ExtractStructured::GetSampleRate
(C++ function), 111

vtkm::filter::entity_extraction::ExtractStructured::GetVOI
(C++ function), 110

vtkm::filter::entity_extraction::ExtractStructured::SetSampleRate
(C++ function), 111

vtkm::filter::entity_extraction::ExtractStructured::SetVOI
(C++ function), 110

vtkm::filter::entity_extraction::GhostCellRemove
(C++ class), 111

vtkm::filter::entity_extraction::GhostCellRemove::AreAllTypesRemoved
(C++ function), 112

vtkm::filter::entity_extraction::GhostCellRemove::GetRemoveGhostField
(C++ function), 111

vtkm::filter::entity_extraction::GhostCellRemove::GetTypesToRemove
(C++ function), 112

vtkm::filter::entity_extraction::GhostCellRemove::GetUseGhostCellsAsField
(C++ function), 112

vtkm::filter::entity_extraction::GhostCellRemove::SetRemoveGhostField
(C++ function), 111

vtkm::filter::entity_extraction::GhostCellRemove::SetTypesToRemove
(C++ function), 111

vtkm::filter::entity_extraction::GhostCellRemove::SetTypesToRemoveToAll
(C++ function), 112

vtkm::filter::entity_extraction::GhostCellRemove::SetUseGhostCellsAsField
(C++ function), 112

vtkm::filter::entity_extraction::Threshold
(C++ class), 112

vtkm::filter::entity_extraction::Threshold::GetAllInRange
(C++ function), 114

vtkm::filter::entity_extraction::Threshold::GetInvert
(C++ function), 114

vtkm::filter::entity_extraction::Threshold::GetLowerThreshold
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::GetUpperThreshold
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetAllInRange
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetComponentToTest
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetComponentToTestToAll
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetComponentToTestToAny
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetInvert
(C++ function), 114

vtkm::filter::entity_extraction::Threshold::SetLowerThreshold
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetThresholdAbove
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetThresholdBelow
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetThresholdBetween
(C++ function), 113

vtkm::filter::entity_extraction::Threshold::SetUpperThreshold
(C++ function), 113

vtkm::filter::field_conversion::CellAverage
(C++ class), 114

vtkm::filter::field_conversion::PointAverage
(C++ class), 115

vtkm::filter::field_transform::CompositeVectors
(C++ class), 115

vtkm::filter::field_transform::CompositeVectors::GetNumberOfFields
(C++ function), 115

vtkm::filter::field_transform::CompositeVectors::SetFieldNameList
(C++ function), 115

vtkm::filter::field_transform::CylindricalCoordinateTransform
(C++ class), 116

vtkm::filter::field_transform::CylindricalCoordinateTransform::SetCartesianToCylindrical
(C++ function), 116

vtkm::filter::field_transform::CylindricalCoordinateTransform::SetCylindricalToCartesian
(C++ function), 116

vtkm::filter::field_transform::FieldToColors
(C++ class), 116

vtkm::filter::field_transform::FieldToColors::GetColorTable
(C++ function), 117

vtkm::filter::field_transform::FieldToColors::GetMappingComponent
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::GetMappingMode
(C++ function), 117

vtkm::filter::field_transform::FieldToColors::GetNumberOfSamplingPoints
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::GetOutputMode
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::InputMode
(C++ enum), 116

vtkm::filter::field_transform::FieldToColors::InputMode::Component
(C++ enumerator), 117

vtkm::filter::field_transform::FieldToColors::InputMode::Magnitude
(C++ enumerator), 116

vtkm::filter::field_transform::FieldToColors::InputMode::Scalar
(C++ enumerator), 116

vtkm::filter::field_transform::FieldToColors::IsMappingComponent
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::IsMappingMagnitude
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::IsMappingScalar
(C++ function), 118

Index 451

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::field_transform::FieldToColors::IsOutputRGB
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::IsOutputRGBA
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::OutputMode
(C++ enum), 117

vtkm::filter::field_transform::FieldToColors::OutputMode::RGB
(C++ enumerator), 117

vtkm::filter::field_transform::FieldToColors::OutputMode::RGBA
(C++ enumerator), 117

vtkm::filter::field_transform::FieldToColors::SetColorTable
(C++ function), 117

vtkm::filter::field_transform::FieldToColors::SetMappingComponent
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::SetMappingMode
(C++ function), 117

vtkm::filter::field_transform::FieldToColors::SetMappingToComponent
(C++ function), 117

vtkm::filter::field_transform::FieldToColors::SetMappingToMagnitude
(C++ function), 117

vtkm::filter::field_transform::FieldToColors::SetMappingToScalar
(C++ function), 117

vtkm::filter::field_transform::FieldToColors::SetNumberOfSamplingPoints
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::SetOutputMode
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::SetOutputToRGB
(C++ function), 118

vtkm::filter::field_transform::FieldToColors::SetOutputToRGBA
(C++ function), 118

vtkm::filter::field_transform::GenerateIds
(C++ class), 119

vtkm::filter::field_transform::GenerateIds::GetCellFieldName
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::GetGenerateCellIds
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::GetGeneratePointIds
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::GetPointFieldName
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::GetUseFloat
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::SetCellFieldName
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::SetGenerateCellIds
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::SetGeneratePointIds
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::SetPointFieldName
(C++ function), 119

vtkm::filter::field_transform::GenerateIds::SetUseFloat
(C++ function), 120

vtkm::filter::field_transform::LogValues
(C++ class), 120

vtkm::filter::field_transform::LogValues::GetBaseValue
(C++ function), 121

vtkm::filter::field_transform::LogValues::GetMinValue
(C++ function), 121

vtkm::filter::field_transform::LogValues::LogBase
(C++ enum), 120

vtkm::filter::field_transform::LogValues::LogBase::E
(C++ enumerator), 120

vtkm::filter::field_transform::LogValues::LogBase::TEN
(C++ enumerator), 120

vtkm::filter::field_transform::LogValues::LogBase::TWO
(C++ enumerator), 120

vtkm::filter::field_transform::LogValues::SetBaseValue
(C++ function), 121

vtkm::filter::field_transform::LogValues::SetBaseValueTo10
(C++ function), 121

vtkm::filter::field_transform::LogValues::SetBaseValueTo2
(C++ function), 121

vtkm::filter::field_transform::LogValues::SetBaseValueToE
(C++ function), 121

vtkm::filter::field_transform::LogValues::SetMinValue
(C++ function), 121

vtkm::filter::field_transform::PointElevation
(C++ class), 121

vtkm::filter::field_transform::PointElevation::SetHighPoint
(C++ function), 122

vtkm::filter::field_transform::PointElevation::SetLowPoint
(C++ function), 122

vtkm::filter::field_transform::PointElevation::SetRange
(C++ function), 122

vtkm::filter::field_transform::PointTransform
(C++ class), 122

vtkm::filter::field_transform::PointTransform::SetChangeCoordinateSystem
(C++ function), 124

vtkm::filter::field_transform::PointTransform::SetRotation
(C++ function), 123

vtkm::filter::field_transform::PointTransform::SetRotationX
(C++ function), 123

vtkm::filter::field_transform::PointTransform::SetRotationY
(C++ function), 123

vtkm::filter::field_transform::PointTransform::SetRotationZ
(C++ function), 123

vtkm::filter::field_transform::PointTransform::SetScale
(C++ function), 123

vtkm::filter::field_transform::PointTransform::SetTransform
(C++ function), 123

vtkm::filter::field_transform::PointTransform::SetTranslation
(C++ function), 123

vtkm::filter::field_transform::SphericalCoordinateTransform
(C++ class), 124

vtkm::filter::field_transform::SphericalCoordinateTransform::SetCartesianToSpherical
(C++ function), 124

vtkm::filter::field_transform::SphericalCoordinateTransform::SetSphericalToCartesian
(C++ function), 124

452 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::field_transform::Warp (C++
class), 124

vtkm::filter::field_transform::Warp::GetChangeCoordinateSystem
(C++ function), 126

vtkm::filter::field_transform::Warp::GetConstantDirection
(C++ function), 125

vtkm::filter::field_transform::Warp::GetDirectionFieldName
(C++ function), 125

vtkm::filter::field_transform::Warp::GetScaleFactor
(C++ function), 126

vtkm::filter::field_transform::Warp::GetScaleFieldName
(C++ function), 125

vtkm::filter::field_transform::Warp::GetUseConstantDirection
(C++ function), 125

vtkm::filter::field_transform::Warp::GetUseScaleField
(C++ function), 126

vtkm::filter::field_transform::Warp::SetChangeCoordinateSystem
(C++ function), 126

vtkm::filter::field_transform::Warp::SetConstantDirection
(C++ function), 125

vtkm::filter::field_transform::Warp::SetDirectionField
(C++ function), 125

vtkm::filter::field_transform::Warp::SetScaleFactor
(C++ function), 126

vtkm::filter::field_transform::Warp::SetScaleField
(C++ function), 125

vtkm::filter::field_transform::Warp::SetUseConstantDirection
(C++ function), 125

vtkm::filter::field_transform::Warp::SetUseScaleField
(C++ function), 126

vtkm::filter::FieldSelection (C++ class), 88
vtkm::filter::FieldSelection::AddField (C++

function), 88
vtkm::filter::FieldSelection::ClearFields

(C++ function), 90
vtkm::filter::FieldSelection::FieldSelection

(C++ function), 89
vtkm::filter::FieldSelection::GetFieldMode

(C++ function), 89
vtkm::filter::FieldSelection::GetMode (C++

function), 90
vtkm::filter::FieldSelection::HasField (C++

function), 90
vtkm::filter::FieldSelection::IsFieldSelected

(C++ function), 90
vtkm::filter::FieldSelection::SetMode (C++

function), 90
vtkm::filter::Filter::CastAndCallScalarField

(C++ function), 255, 256
vtkm::filter::Filter::CastAndCallVariableVecField

(C++ function), 358
vtkm::filter::Filter::CastAndCallVecField

(C++ function), 357, 358
vtkm::filter::Filter::CreateResult (C++ func-

tion), 257
vtkm::filter::Filter::CreateResultCoordinateSystem

(C++ function), 259, 260
vtkm::filter::Filter::CreateResultField

(C++ function), 258
vtkm::filter::Filter::CreateResultFieldCell

(C++ function), 259
vtkm::filter::Filter::CreateResultFieldPoint

(C++ function), 258
vtkm::filter::Filter::DoExecute (C++ function),

253
vtkm::filter::Filter::DoExecutePartitions

(C++ function), 254
vtkm::filter::Filter::Execute (C++ function), 83
vtkm::filter::Filter::GetActiveCoordinateSystemIndex

(C++ function), 85
vtkm::filter::Filter::GetActiveFieldAssociation

(C++ function), 85
vtkm::filter::Filter::GetActiveFieldName

(C++ function), 85
vtkm::filter::Filter::GetFieldFromDataSet

(C++ function), 255
vtkm::filter::Filter::GetFieldsToPass (C++

function), 87
vtkm::filter::Filter::GetNumberOfActiveFields

(C++ function), 86
vtkm::filter::Filter::GetOutputFieldName

(C++ function), 92
vtkm::filter::Filter::GetPassCoordinateSystems

(C++ function), 91
vtkm::filter::Filter::GetUseCoordinateSystemAsField

(C++ function), 85
vtkm::filter::Filter::SetActiveCoordinateSystem

(C++ function), 85
vtkm::filter::Filter::SetActiveField (C++

function), 85
vtkm::filter::Filter::SetFieldsToPass (C++

function), 86, 87, 90
vtkm::filter::Filter::SetOutputFieldName

(C++ function), 92
vtkm::filter::Filter::SetPassCoordinateSystems

(C++ function), 91
vtkm::filter::Filter::SetUseCoordinateSystemAsField

(C++ function), 85
vtkm::filter::flow::FilterParticleAdvection

(C++ class), 126
vtkm::filter::flow::FilterParticleAdvection::CanThread

(C++ function), 127
vtkm::filter::flow::FilterParticleAdvection::SetNumberOfSteps

(C++ function), 127
vtkm::filter::flow::FilterParticleAdvection::SetSeeds

(C++ function), 127
vtkm::filter::flow::FilterParticleAdvection::SetStepSize

(C++ function), 127

Index 453

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::flow::LagrangianStructures
(C++ class), 130

vtkm::filter::flow::LagrangianStructures::CanThread
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::GetAdvectionTime
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::GetAuxiliaryGridDimensions
(C++ function), 132

vtkm::filter::flow::LagrangianStructures::GetFlowMapOutput
(C++ function), 132

vtkm::filter::flow::LagrangianStructures::GetNumberOfSteps
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::GetOutputFieldName
(C++ function), 132

vtkm::filter::flow::LagrangianStructures::GetStepSize
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::GetUseAuxiliaryGrid
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::GetUseFlowMapOutput
(C++ function), 132

vtkm::filter::flow::LagrangianStructures::SetAdvectionTime
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::SetAuxiliaryGridDimensions
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::SetFlowMapOutput
(C++ function), 132

vtkm::filter::flow::LagrangianStructures::SetNumberOfSteps
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::SetOutputFieldName
(C++ function), 132

vtkm::filter::flow::LagrangianStructures::SetStepSize
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::SetUseAuxiliaryGrid
(C++ function), 131

vtkm::filter::flow::LagrangianStructures::SetUseFlowMapOutput
(C++ function), 132

vtkm::filter::flow::Pathline (C++ class), 128
vtkm::filter::flow::Streamline (C++ class), 127
vtkm::filter::flow::StreamSurface (C++ class),

129
vtkm::filter::flow::StreamSurface::SetNumberOfSteps

(C++ function), 129
vtkm::filter::flow::StreamSurface::SetSeeds

(C++ function), 129, 130
vtkm::filter::flow::StreamSurface::SetStepSize

(C++ function), 129
vtkm::filter::geometry_refinement::ConvertToPointCloud

(C++ class), 133
vtkm::filter::geometry_refinement::ConvertToPointCloud::GetAssociateFieldsWithCells

(C++ function), 133
vtkm::filter::geometry_refinement::ConvertToPointCloud::SetAssociateFieldsWithCells

(C++ function), 133
vtkm::filter::geometry_refinement::Shrink

(C++ class), 133

vtkm::filter::geometry_refinement::Shrink::GetShrinkFactor
(C++ function), 134

vtkm::filter::geometry_refinement::Shrink::SetShrinkFactor
(C++ function), 134

vtkm::filter::geometry_refinement::SplitSharpEdges
(C++ class), 134

vtkm::filter::geometry_refinement::SplitSharpEdges::GetFeatureAngle
(C++ function), 134

vtkm::filter::geometry_refinement::SplitSharpEdges::SetFeatureAngle
(C++ function), 134

vtkm::filter::geometry_refinement::Tetrahedralize
(C++ class), 135

vtkm::filter::geometry_refinement::Triangulate
(C++ class), 135

vtkm::filter::geometry_refinement::Tube
(C++ class), 135

vtkm::filter::geometry_refinement::Tube::SetCapping
(C++ function), 136

vtkm::filter::geometry_refinement::Tube::SetNumberOfSides
(C++ function), 136

vtkm::filter::geometry_refinement::Tube::SetRadius
(C++ function), 136

vtkm::filter::geometry_refinement::VertexClustering
(C++ class), 136

vtkm::filter::geometry_refinement::VertexClustering::GetNumberOfDivisions
(C++ function), 137

vtkm::filter::geometry_refinement::VertexClustering::SetNumberOfDivisions
(C++ function), 137

vtkm::filter::MapFieldMergeAverage (C++ func-
tion), 363, 364

vtkm::filter::MapFieldPermutation (C++ func-
tion), 362, 363

vtkm::filter::mesh_info::CellMeasures (C++
class), 137

vtkm::filter::mesh_info::CellMeasures::GetCellMeasureName
(C++ function), 138

vtkm::filter::mesh_info::CellMeasures::GetMeasure
(C++ function), 137

vtkm::filter::mesh_info::CellMeasures::SetCellMeasureName
(C++ function), 138

vtkm::filter::mesh_info::CellMeasures::SetMeasure
(C++ function), 137

vtkm::filter::mesh_info::CellMeasures::SetMeasureToAll
(C++ function), 138

vtkm::filter::mesh_info::CellMeasures::SetMeasureToArcLength
(C++ function), 138

vtkm::filter::mesh_info::CellMeasures::SetMeasureToArea
(C++ function), 138

vtkm::filter::mesh_info::CellMeasures::SetMeasureToVolume
(C++ function), 138

vtkm::filter::mesh_info::CellMetric (C++
enum), 143

vtkm::filter::mesh_info::CellMetric::Area
(C++ enumerator), 143

454 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::mesh_info::CellMetric::AspectGamma
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::AspectRatio
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::Condition
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::DiagonalRatio
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::Dimension
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::Jacobian
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::MaxAngle
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::MaxDiagonal
(C++ enumerator), 144

vtkm::filter::mesh_info::CellMetric::MinAngle
(C++ enumerator), 145

vtkm::filter::mesh_info::CellMetric::MinDiagonal
(C++ enumerator), 145

vtkm::filter::mesh_info::CellMetric::None
(C++ enumerator), 147

vtkm::filter::mesh_info::CellMetric::Oddy
(C++ enumerator), 145

vtkm::filter::mesh_info::CellMetric::RelativeSizeSquared
(C++ enumerator), 145

vtkm::filter::mesh_info::CellMetric::ScaledJacobian
(C++ enumerator), 145

vtkm::filter::mesh_info::CellMetric::Shape
(C++ enumerator), 146

vtkm::filter::mesh_info::CellMetric::ShapeAndSize
(C++ enumerator), 146

vtkm::filter::mesh_info::CellMetric::Shear
(C++ enumerator), 146

vtkm::filter::mesh_info::CellMetric::Skew
(C++ enumerator), 146

vtkm::filter::mesh_info::CellMetric::Stretch
(C++ enumerator), 146

vtkm::filter::mesh_info::CellMetric::Taper
(C++ enumerator), 146

vtkm::filter::mesh_info::CellMetric::Volume
(C++ enumerator), 147

vtkm::filter::mesh_info::CellMetric::Warpage
(C++ enumerator), 147

vtkm::filter::mesh_info::GhostCellClassify
(C++ class), 139

vtkm::filter::mesh_info::GhostCellClassify::GetGhostCellName
(C++ function), 139

vtkm::filter::mesh_info::GhostCellClassify::SetGhostCellName
(C++ function), 139

vtkm::filter::mesh_info::IntegrationType
(C++ enum), 138

vtkm::filter::mesh_info::IntegrationType::AllMeasures
(C++ enumerator), 138

vtkm::filter::mesh_info::IntegrationType::ArcLength
(C++ enumerator), 138

vtkm::filter::mesh_info::IntegrationType::Area
(C++ enumerator), 138

vtkm::filter::mesh_info::IntegrationType::None
(C++ enumerator), 138

vtkm::filter::mesh_info::IntegrationType::Volume
(C++ enumerator), 138

vtkm::filter::mesh_info::MeshQuality (C++
class), 143

vtkm::filter::mesh_info::MeshQuality::GetMetric
(C++ function), 143

vtkm::filter::mesh_info::MeshQuality::GetMetricName
(C++ function), 143

vtkm::filter::mesh_info::MeshQuality::SetMetric
(C++ function), 143

vtkm::filter::mesh_info::MeshQualityArea
(C++ class), 139

vtkm::filter::mesh_info::MeshQualityArea::ComputeAverageArea
(C++ function), 139

vtkm::filter::mesh_info::MeshQualityArea::ComputeTotalArea
(C++ function), 139

vtkm::filter::mesh_info::MeshQualityAspectGamma
(C++ class), 139

vtkm::filter::mesh_info::MeshQualityAspectRatio
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityCondition
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityDiagonalRatio
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityDimension
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityJacobian
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityMaxAngle
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityMaxDiagonal
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityMinAngle
(C++ class), 140

vtkm::filter::mesh_info::MeshQualityMinDiagonal
(C++ class), 141

vtkm::filter::mesh_info::MeshQualityOddy
(C++ class), 141

vtkm::filter::mesh_info::MeshQualityRelativeSizeSquared
(C++ class), 141

vtkm::filter::mesh_info::MeshQualityScaledJacobian
(C++ class), 141

vtkm::filter::mesh_info::MeshQualityShape
(C++ class), 141

vtkm::filter::mesh_info::MeshQualityShapeAndSize
(C++ class), 142

vtkm::filter::mesh_info::MeshQualityShear
(C++ class), 142

Index 455

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::mesh_info::MeshQualitySkew
(C++ class), 142

vtkm::filter::mesh_info::MeshQualityStretch
(C++ class), 142

vtkm::filter::mesh_info::MeshQualityTaper
(C++ class), 142

vtkm::filter::mesh_info::MeshQualityVolume
(C++ class), 142

vtkm::filter::mesh_info::MeshQualityVolume::ComputeAverageVolume
(C++ function), 143

vtkm::filter::mesh_info::MeshQualityVolume::ComputeTotalVolume
(C++ function), 143

vtkm::filter::mesh_info::MeshQualityWarpage
(C++ class), 143

vtkm::filter::multi_block::AmrArrays (C++
class), 147

vtkm::filter::multi_block::MergeDataSets
(C++ class), 148

vtkm::filter::multi_block::MergeDataSets::GetInvalidValue
(C++ function), 149

vtkm::filter::multi_block::MergeDataSets::SetInvalidValue
(C++ function), 149

vtkm::filter::resampling::HistSampling (C++
class), 149

vtkm::filter::resampling::HistSampling::GetNumberOfBins
(C++ function), 150

vtkm::filter::resampling::HistSampling::GetSampleFraction
(C++ function), 150

vtkm::filter::resampling::HistSampling::GetSeed
(C++ function), 150

vtkm::filter::resampling::HistSampling::SetNumberOfBins
(C++ function), 150

vtkm::filter::resampling::HistSampling::SetSampleFraction
(C++ function), 150

vtkm::filter::resampling::HistSampling::SetSeed
(C++ function), 150

vtkm::filter::resampling::Probe (C++ class),
150

vtkm::filter::resampling::Probe::GetGeometry
(C++ function), 151

vtkm::filter::resampling::Probe::GetInvalidValue
(C++ function), 151

vtkm::filter::resampling::Probe::SetGeometry
(C++ function), 151

vtkm::filter::resampling::Probe::SetInvalidValue
(C++ function), 151

vtkm::filter::vector_analysis::CrossProduct
(C++ class), 151

vtkm::filter::vector_analysis::CrossProduct::GetPrimaryFieldAssociation
(C++ function), 152

vtkm::filter::vector_analysis::CrossProduct::GetPrimaryFieldName
(C++ function), 151

vtkm::filter::vector_analysis::CrossProduct::GetSecondaryCoordinateSystemIndex
(C++ function), 153

vtkm::filter::vector_analysis::CrossProduct::GetSecondaryFieldAssociation
(C++ function), 152

vtkm::filter::vector_analysis::CrossProduct::GetSecondaryFieldName
(C++ function), 152

vtkm::filter::vector_analysis::CrossProduct::GetUseCoordinateSystemAsPrimaryField
(C++ function), 152

vtkm::filter::vector_analysis::CrossProduct::GetUseCoordinateSystemAsSecondaryField
(C++ function), 153

vtkm::filter::vector_analysis::CrossProduct::SetPrimaryCoordinateSystem
(C++ function), 152

vtkm::filter::vector_analysis::CrossProduct::SetPrimaryField
(C++ function), 151

vtkm::filter::vector_analysis::CrossProduct::SetSecondaryCoordinateSystem
(C++ function), 153

vtkm::filter::vector_analysis::CrossProduct::SetSecondaryField
(C++ function), 152

vtkm::filter::vector_analysis::CrossProduct::SetUseCoordinateSystemAsPrimaryField
(C++ function), 152

vtkm::filter::vector_analysis::CrossProduct::SetUseCoordinateSystemAsSecondaryField
(C++ function), 153

vtkm::filter::vector_analysis::DotProduct
(C++ class), 153

vtkm::filter::vector_analysis::DotProduct::GetPrimaryCoordinateSystemIndex
(C++ function), 154

vtkm::filter::vector_analysis::DotProduct::GetPrimaryFieldAssociation
(C++ function), 154

vtkm::filter::vector_analysis::DotProduct::GetPrimaryFieldName
(C++ function), 153

vtkm::filter::vector_analysis::DotProduct::GetSecondaryCoordinateSystemIndex
(C++ function), 155

vtkm::filter::vector_analysis::DotProduct::GetSecondaryFieldAssociation
(C++ function), 155

vtkm::filter::vector_analysis::DotProduct::GetSecondaryFieldName
(C++ function), 154

vtkm::filter::vector_analysis::DotProduct::GetUseCoordinateSystemAsPrimaryField
(C++ function), 154

vtkm::filter::vector_analysis::DotProduct::GetUseCoordinateSystemAsSecondaryField
(C++ function), 155

vtkm::filter::vector_analysis::DotProduct::SetPrimaryCoordinateSystem
(C++ function), 154

vtkm::filter::vector_analysis::DotProduct::SetPrimaryField
(C++ function), 153

vtkm::filter::vector_analysis::DotProduct::SetSecondaryCoordinateSystem
(C++ function), 155

vtkm::filter::vector_analysis::DotProduct::SetSecondaryField
(C++ function), 154

vtkm::filter::vector_analysis::DotProduct::SetUseCoordinateSystemAsPrimaryField
(C++ function), 154

vtkm::filter::vector_analysis::DotProduct::SetUseCoordinateSystemAsSecondaryField
(C++ function), 155

vtkm::filter::vector_analysis::Gradient
(C++ class), 155

vtkm::filter::vector_analysis::Gradient::GetComputeDivergence
(C++ function), 156

456 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter::vector_analysis::Gradient::GetComputeGradient
(C++ function), 157

vtkm::filter::vector_analysis::Gradient::GetComputePointGradient
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::GetComputeQCriterion
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::GetComputeVorticity
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::GetDivergenceName
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::GetQCriterionName
(C++ function), 157

vtkm::filter::vector_analysis::Gradient::GetVorticityName
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::SetColumnMajorOrdering
(C++ function), 157

vtkm::filter::vector_analysis::Gradient::SetComputeDivergence
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::SetComputeGradient
(C++ function), 157

vtkm::filter::vector_analysis::Gradient::SetComputePointGradient
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::SetComputeQCriterion
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::SetComputeVorticity
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::SetDivergenceName
(C++ function), 156

vtkm::filter::vector_analysis::Gradient::SetQCriterionName
(C++ function), 157

vtkm::filter::vector_analysis::Gradient::SetRowMajorOrdering
(C++ function), 157

vtkm::filter::vector_analysis::Gradient::SetVorticityName
(C++ function), 156

vtkm::filter::vector_analysis::SurfaceNormals
(C++ class), 157

vtkm::filter::vector_analysis::SurfaceNormals::GetAutoOrientNormals
(C++ function), 159

vtkm::filter::vector_analysis::SurfaceNormals::GetCellNormalsName
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::GetConsistency
(C++ function), 159

vtkm::filter::vector_analysis::SurfaceNormals::GetFlipNormals
(C++ function), 159

vtkm::filter::vector_analysis::SurfaceNormals::GetGenerateCellNormals
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::GetGeneratePointNormals
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::GetNormalizeCellNormals
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::GetPointNormalsName
(C++ function), 159

vtkm::filter::vector_analysis::SurfaceNormals::SetAutoOrientNormals
(C++ function), 159

vtkm::filter::vector_analysis::SurfaceNormals::SetCellNormalsName
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::SetConsistency
(C++ function), 159

vtkm::filter::vector_analysis::SurfaceNormals::SetFlipNormals
(C++ function), 159

vtkm::filter::vector_analysis::SurfaceNormals::SetGenerateCellNormals
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::SetGeneratePointNormals
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::SetNormalizeCellNormals
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::SetPointNormalsName
(C++ function), 158

vtkm::filter::vector_analysis::SurfaceNormals::SurfaceNormals
(C++ function), 158

vtkm::filter::vector_analysis::VectorMagnitude
(C++ class), 159

vtkm::filter::zfp::ZFPCompressor1D (C++
class), 160

vtkm::filter::zfp::ZFPCompressor1D::GetRate
(C++ function), 160

vtkm::filter::zfp::ZFPCompressor1D::SetRate
(C++ function), 160

vtkm::filter::zfp::ZFPCompressor2D (C++
class), 160

vtkm::filter::zfp::ZFPCompressor2D::GetRate
(C++ function), 160

vtkm::filter::zfp::ZFPCompressor2D::SetRate
(C++ function), 160

vtkm::filter::zfp::ZFPCompressor3D (C++
class), 160

vtkm::filter::zfp::ZFPCompressor3D::GetRate
(C++ function), 161

vtkm::filter::zfp::ZFPCompressor3D::SetRate
(C++ function), 161

vtkm::filter::zfp::ZFPDecompressor1D (C++
class), 161

vtkm::filter::zfp::ZFPDecompressor1D::GetRate
(C++ function), 161

vtkm::filter::zfp::ZFPDecompressor1D::SetRate
(C++ function), 161

vtkm::filter::zfp::ZFPDecompressor2D (C++
class), 161

vtkm::filter::zfp::ZFPDecompressor2D::GetRate
(C++ function), 161

vtkm::filter::zfp::ZFPDecompressor2D::SetRate
(C++ function), 161

vtkm::filter::zfp::ZFPDecompressor3D (C++
class), 161

vtkm::filter::zfp::ZFPDecompressor3D::GetRate
(C++ function), 162

vtkm::filter::zfp::ZFPDecompressor3D::SetRate
(C++ function), 162

Index 457

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::filter_contour
variable, 14

vtkm::filter_field_transform
variable, 14

vtkm::Float32 (C++ type), 25
vtkm::Float64 (C++ type), 25
vtkm::FloatDefault (C++ type), 25
vtkm::FloatDistance (C++ function), 381
vtkm::Floor (C++ function), 377
vtkm::FMod (C++ function), 376
vtkm::ForEach (C++ function), 302
vtkm::Frustum (C++ class), 226
vtkm::Get (C++ function), 301
vtkm::get (C++ function), 301
vtkm::Id (C++ type), 26
vtkm::Id2 (C++ type), 28
vtkm::Id3 (C++ type), 28
vtkm::Id4 (C++ type), 29
vtkm::IdComponent (C++ type), 26
vtkm::IdComponent2 (C++ type), 29
vtkm::IdComponent3 (C++ type), 29
vtkm::IdComponent4 (C++ type), 29
vtkm::ImplicitFunctionGeneral (C++ class), 227
vtkm::Infinity (C++ function), 372
vtkm::Infinity32 (C++ function), 372
vtkm::Infinity64 (C++ function), 372
vtkm::Int16 (C++ type), 26
vtkm::Int32 (C++ type), 27
vtkm::Int64 (C++ type), 27
vtkm::Int8 (C++ type), 26
vtkm::io

variable, 14
vtkm::io::ErrorIO (C++ class), 204
vtkm::io::FileType (C++ enum), 80
vtkm::io::FileType::ASCII (C++ enumerator), 80
vtkm::io::FileType::BINARY (C++ enumerator), 80
vtkm::io::ImageReaderPNG (C++ class), 78
vtkm::io::ImageReaderPNM (C++ class), 78
vtkm::io::ImageWriterBase::PixelDepth (C++

enum), 80
vtkm::io::ImageWriterBase::PixelDepth::PIXEL_16

(C++ enumerator), 80
vtkm::io::ImageWriterBase::PixelDepth::PIXEL_8

(C++ enumerator), 80
vtkm::io::ImageWriterPNG (C++ class), 80
vtkm::io::ImageWriterPNM (C++ class), 81
vtkm::io::ImageWriterPNM::Write (C++ function),

81
vtkm::io::VTKDataSetReader (C++ class), 77
vtkm::io::VTKDataSetReader::VTKDataSetReader

(C++ function), 78
vtkm::io::VTKDataSetWriter (C++ class), 79
vtkm::io::VTKDataSetWriter::GetFileType

(C++ function), 79

vtkm::io::VTKDataSetWriter::SetFileType
(C++ function), 79

vtkm::io::VTKDataSetWriter::SetFileTypeToAscii
(C++ function), 79

vtkm::io::VTKDataSetWriter::SetFileTypeToBinary
(C++ function), 80

vtkm::io::VTKDataSetWriter::VTKDataSetWriter
(C++ function), 79

vtkm::io::VTKDataSetWriter::WriteDataSet
(C++ function), 79

vtkm::IsFinite (C++ function), 372
vtkm::IsInf (C++ function), 372
vtkm::IsNan (C++ function), 372
vtkm::IsNegative (C++ function), 372
vtkm::Lerp (C++ function), 382
vtkm::List (C++ struct), 288
vtkm::ListAppend (C++ type), 293
vtkm::ListApply (C++ type), 294
vtkm::ListAt (C++ type), 292
vtkm::ListCross (C++ type), 296
vtkm::ListEmpty (C++ type), 288
vtkm::ListForEach (C++ function), 296
vtkm::ListHas (C++ type), 292
vtkm::ListIndexOf (C++ type), 292
vtkm::ListIntersect (C++ type), 294
vtkm::ListRemoveIf (C++ type), 295
vtkm::ListSize (C++ type), 291
vtkm::ListTransform (C++ type), 295
vtkm::ListUniversal (C++ type), 288
vtkm::Log (C++ function), 370
vtkm::Log10 (C++ function), 370, 371
vtkm::Log1P (C++ function), 371
vtkm::Log2 (C++ function), 371
vtkm::Magnitude (C++ function), 382
vtkm::MagnitudeSquared (C++ function), 382
vtkm::make_Pair (C++ function), 299
vtkm::make_tuple (C++ function), 300
vtkm::make_Vec (C++ function), 266
vtkm::make_VecC (C++ function), 268
vtkm::MakeTuple (C++ function), 300
vtkm::Matrix (C++ class), 384
vtkm::Matrix::Matrix (C++ function), 384
vtkm::Matrix::operator() (C++ function), 384
vtkm::Matrix::operator[] (C++ function), 384
vtkm::MatrixDeterminant (C++ function), 385
vtkm::MatrixGetColumn (C++ function), 385
vtkm::MatrixGetRow (C++ function), 385
vtkm::MatrixIdentity (C++ function), 385
vtkm::MatrixInverse (C++ function), 385
vtkm::MatrixMultiply (C++ function), 385, 386
vtkm::MatrixSetColumn (C++ function), 386
vtkm::MatrixSetRow (C++ function), 386
vtkm::MatrixTranspose (C++ function), 386
vtkm::Max (C++ function), 381

458 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::Min (C++ function), 382
vtkm::ModF (C++ function), 375
vtkm::Nan (C++ function), 372
vtkm::Nan32 (C++ function), 372
vtkm::Nan64 (C++ function), 372
vtkm::NegativeInfinity (C++ function), 373
vtkm::NegativeInfinity32 (C++ function), 373
vtkm::NegativeInfinity64 (C++ function), 373
vtkm::NewtonsMethod (C++ function), 386
vtkm::NewtonsMethodResult (C++ struct), 387
vtkm::NewtonsMethodResult::Converged (C++

member), 387
vtkm::NewtonsMethodResult::Solution (C++

member), 387
vtkm::NewtonsMethodResult::Valid (C++ mem-

ber), 387
vtkm::Normal (C++ function), 382
vtkm::Normalize (C++ function), 382
vtkm::Orthonormalize (C++ function), 382
vtkm::Pair (C++ struct), 298
vtkm::Pair::first (C++ member), 299
vtkm::Pair::first_type (C++ type), 298
vtkm::Pair::FirstType (C++ type), 298
vtkm::Pair::operator!= (C++ function), 299
vtkm::Pair::operator= (C++ function), 299
vtkm::Pair::operator== (C++ function), 299
vtkm::Pair::operator> (C++ function), 299
vtkm::Pair::operator>= (C++ function), 299
vtkm::Pair::operator< (C++ function), 299
vtkm::Pair::operator<= (C++ function), 299
vtkm::Pair::Pair (C++ function), 298, 299
vtkm::Pair::second (C++ member), 299
vtkm::Pair::second_type (C++ type), 298
vtkm::Pair::SecondType (C++ type), 298
vtkm::Pi (C++ function), 380
vtkm::Pi_180 (C++ function), 380
vtkm::Pi_2 (C++ function), 380
vtkm::Pi_3 (C++ function), 380
vtkm::Pi_4 (C++ function), 380
vtkm::Plane (C++ class), 219
vtkm::Plane::ClosestPoint (C++ function), 220
vtkm::Plane::DistanceTo (C++ function), 220
vtkm::Plane::GetNormal (C++ function), 221
vtkm::Plane::GetOrigin (C++ function), 221
vtkm::Plane::Gradient (C++ function), 221
vtkm::Plane::Intersect (C++ function), 220, 221
vtkm::Plane::IsValid (C++ function), 220
vtkm::Plane::Plane (C++ function), 220, 221
vtkm::Plane::SetNormal (C++ function), 221
vtkm::Plane::SetOrigin (C++ function), 221
vtkm::Plane::Value (C++ function), 221
vtkm::Pow (C++ function), 371
vtkm::Project (C++ function), 383
vtkm::ProjectedDistance (C++ function), 383

vtkm::QuadraticRoots (C++ function), 373
vtkm::Range (C++ struct), 271
vtkm::Range::Center (C++ function), 271
vtkm::Range::Contains (C++ function), 271
vtkm::Range::Include (C++ function), 271
vtkm::Range::Intersection (C++ function), 272
vtkm::Range::IsNonEmpty (C++ function), 271
vtkm::Range::Length (C++ function), 271
vtkm::Range::Max (C++ member), 272
vtkm::Range::Min (C++ member), 272
vtkm::Range::operator+ (C++ function), 272
vtkm::Range::Range (C++ function), 271
vtkm::Range::Union (C++ function), 272
vtkm::RangeId (C++ struct), 276
vtkm::RangeId2 (C++ struct), 277
vtkm::RangeId2::Center (C++ function), 277
vtkm::RangeId2::Contains (C++ function), 277
vtkm::RangeId2::Include (C++ function), 278
vtkm::RangeId2::IsNonEmpty (C++ function), 277
vtkm::RangeId2::operator+ (C++ function), 278
vtkm::RangeId2::RangeId2 (C++ function), 277
vtkm::RangeId2::Union (C++ function), 278
vtkm::RangeId2::X (C++ member), 278
vtkm::RangeId2::Y (C++ member), 278
vtkm::RangeId3 (C++ struct), 278
vtkm::RangeId3::Center (C++ function), 279
vtkm::RangeId3::Contains (C++ function), 279
vtkm::RangeId3::Include (C++ function), 279
vtkm::RangeId3::IsNonEmpty (C++ function), 279
vtkm::RangeId3::operator+ (C++ function), 279
vtkm::RangeId3::RangeId3 (C++ function), 279
vtkm::RangeId3::Union (C++ function), 279
vtkm::RangeId3::X (C++ member), 280
vtkm::RangeId3::Y (C++ member), 280
vtkm::RangeId3::Z (C++ member), 280
vtkm::RangeId::Center (C++ function), 276
vtkm::RangeId::Contains (C++ function), 276
vtkm::RangeId::Include (C++ function), 276
vtkm::RangeId::IsNonEmpty (C++ function), 276
vtkm::RangeId::Length (C++ function), 276
vtkm::RangeId::Max (C++ member), 277
vtkm::RangeId::Min (C++ member), 277
vtkm::RangeId::operator+ (C++ function), 277
vtkm::RangeId::RangeId (C++ function), 276
vtkm::RangeId::Union (C++ function), 276
vtkm::RCbrt (C++ function), 373, 374
vtkm::Remainder (C++ function), 375
vtkm::RemainderQuotient (C++ function), 375
vtkm::rendering

variable, 14
vtkm::rendering::Actor (C++ class), 163
vtkm::rendering::Actor::Actor (C++ function),

164

Index 459

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::rendering::Actor::SetScalarRange (C++
function), 164

vtkm::rendering::Camera (C++ class), 176
vtkm::rendering::Camera::Azimuth (C++ func-

tion), 183
vtkm::rendering::Camera::Dolly (C++ function),

184
vtkm::rendering::Camera::Elevation (C++ func-

tion), 183
vtkm::rendering::Camera::GetClippingRange

(C++ function), 178
vtkm::rendering::Camera::GetFieldOfView

(C++ function), 181
vtkm::rendering::Camera::GetLookAt (C++ func-

tion), 180
vtkm::rendering::Camera::GetMode (C++ func-

tion), 178
vtkm::rendering::Camera::GetPan (C++ function),

182
vtkm::rendering::Camera::GetPosition (C++

function), 180
vtkm::rendering::Camera::GetViewport (C++

function), 179
vtkm::rendering::Camera::GetViewRange2D

(C++ function), 184
vtkm::rendering::Camera::GetViewUp (C++ func-

tion), 180
vtkm::rendering::Camera::GetXScale (C++ func-

tion), 180
vtkm::rendering::Camera::GetZoom (C++ func-

tion), 182
vtkm::rendering::Camera::Pan (C++ function), 181
vtkm::rendering::Camera::ResetToBounds (C++

function), 182, 183
vtkm::rendering::Camera::Roll (C++ function),

183
vtkm::rendering::Camera::SetClippingRange

(C++ function), 178
vtkm::rendering::Camera::SetFieldOfView

(C++ function), 181
vtkm::rendering::Camera::SetLookAt (C++ func-

tion), 180
vtkm::rendering::Camera::SetMode (C++ func-

tion), 178
vtkm::rendering::Camera::SetModeTo2D (C++

function), 178
vtkm::rendering::Camera::SetModeTo3D (C++

function), 178
vtkm::rendering::Camera::SetPosition (C++

function), 180
vtkm::rendering::Camera::SetViewport (C++

function), 179
vtkm::rendering::Camera::SetViewRange2D

(C++ function), 184, 185

vtkm::rendering::Camera::SetViewUp (C++ func-
tion), 180

vtkm::rendering::Camera::SetXScale (C++ func-
tion), 181

vtkm::rendering::Camera::TrackballRotate
(C++ function), 182

vtkm::rendering::Camera::Zoom (C++ function),
182

vtkm::rendering::Canvas (C++ class), 165
vtkm::rendering::Canvas::BlendBackground

(C++ function), 165
vtkm::rendering::Canvas::Canvas (C++ function),

165
vtkm::rendering::Canvas::Clear (C++ function),

165
vtkm::rendering::Canvas::CreateWorldAnnotator

(C++ function), 167
vtkm::rendering::Canvas::GetBackgroundColor

(C++ function), 166
vtkm::rendering::Canvas::GetColorBuffer

(C++ function), 166
vtkm::rendering::Canvas::GetDataSet (C++

function), 166
vtkm::rendering::Canvas::GetDepthBuffer

(C++ function), 166
vtkm::rendering::Canvas::GetForegroundColor

(C++ function), 166
vtkm::rendering::Canvas::GetHeight (C++ func-

tion), 166
vtkm::rendering::Canvas::GetWidth (C++ func-

tion), 166
vtkm::rendering::Canvas::NewCopy (C++ func-

tion), 165
vtkm::rendering::Canvas::ResizeBuffers (C++

function), 166
vtkm::rendering::Canvas::SaveAs (C++ function),

166
vtkm::rendering::Canvas::SetBackgroundColor

(C++ function), 166
vtkm::rendering::Canvas::SetForegroundColor

(C++ function), 166
vtkm::rendering::CanvasRayTracer (C++ class),

165
vtkm::rendering::CanvasRayTracer::CanvasRayTracer

(C++ function), 165
vtkm::rendering::CanvasRayTracer::NewCopy

(C++ function), 165
vtkm::rendering::Color (C++ class), 174
vtkm::rendering::Color::Color (C++ function),

174
vtkm::rendering::Color::SetComponentFromByte

(C++ function), 175
vtkm::rendering::Mapper (C++ class), 167
vtkm::rendering::MapperCylinder (C++ class),

460 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

167
vtkm::rendering::MapperCylinder::SetRadius

(C++ function), 167
vtkm::rendering::MapperCylinder::SetRadiusDelta

(C++ function), 167
vtkm::rendering::MapperCylinder::UseVariableRadius

(C++ function), 167
vtkm::rendering::MapperGlyphBase (C++ class),

167
vtkm::rendering::MapperGlyphBase::GetAssociation

(C++ function), 168
vtkm::rendering::MapperGlyphBase::GetBaseSize

(C++ function), 168
vtkm::rendering::MapperGlyphBase::GetScaleByValue

(C++ function), 168
vtkm::rendering::MapperGlyphBase::GetScaleDelta

(C++ function), 169
vtkm::rendering::MapperGlyphBase::GetUseCells

(C++ function), 168
vtkm::rendering::MapperGlyphBase::GetUsePoints

(C++ function), 168
vtkm::rendering::MapperGlyphBase::SetAssociation

(C++ function), 168
vtkm::rendering::MapperGlyphBase::SetBaseSize

(C++ function), 168
vtkm::rendering::MapperGlyphBase::SetScaleByValue

(C++ function), 169
vtkm::rendering::MapperGlyphBase::SetScaleDelta

(C++ function), 169
vtkm::rendering::MapperGlyphBase::SetUseCells

(C++ function), 168
vtkm::rendering::MapperGlyphBase::SetUsePoints

(C++ function), 168
vtkm::rendering::MapperGlyphScalar (C++

class), 169
vtkm::rendering::MapperGlyphScalar::GetGlyphType

(C++ function), 169
vtkm::rendering::MapperGlyphScalar::SetGlyphType

(C++ function), 169
vtkm::rendering::MapperGlyphVector (C++

class), 169
vtkm::rendering::MapperGlyphVector::GetGlyphType

(C++ function), 169
vtkm::rendering::MapperGlyphVector::SetGlyphType

(C++ function), 169
vtkm::rendering::MapperPoint (C++ class), 169
vtkm::rendering::MapperPoint::GetAssociation

(C++ function), 170
vtkm::rendering::MapperPoint::GetUseCells

(C++ function), 170
vtkm::rendering::MapperPoint::GetUsePoints

(C++ function), 170
vtkm::rendering::MapperPoint::SetAssociation

(C++ function), 170

vtkm::rendering::MapperPoint::SetRadius
(C++ function), 170

vtkm::rendering::MapperPoint::SetRadiusDelta
(C++ function), 170

vtkm::rendering::MapperPoint::SetUseCells
(C++ function), 170

vtkm::rendering::MapperPoint::SetUsePoints
(C++ function), 170

vtkm::rendering::MapperPoint::UseVariableRadius
(C++ function), 170

vtkm::rendering::MapperQuad (C++ class), 171
vtkm::rendering::MapperRayTracer (C++ class),

171
vtkm::rendering::MapperVolume (C++ class), 171
vtkm::rendering::MapperVolume::SetSampleDistance

(C++ function), 171
vtkm::rendering::MapperWireframer (C++ class),

171
vtkm::rendering::MapperWireframer::GetShowInternalZones

(C++ function), 171
vtkm::rendering::MapperWireframer::SetShowInternalZones

(C++ function), 171
vtkm::rendering::Scene (C++ class), 164
vtkm::rendering::Scene::AddActor (C++ func-

tion), 164
vtkm::rendering::Scene::GetActor (C++ func-

tion), 164
vtkm::rendering::Scene::GetNumberOfActors

(C++ function), 164
vtkm::rendering::Scene::GetSpatialBounds

(C++ function), 164
vtkm::rendering::View (C++ class), 172
vtkm::rendering::View1D (C++ class), 173
vtkm::rendering::View1D::Paint (C++ function),

173
vtkm::rendering::View1D::SetLogX (C++ func-

tion), 173
vtkm::rendering::View1D::SetLogY (C++ func-

tion), 173
vtkm::rendering::View2D (C++ class), 173
vtkm::rendering::View2D::Paint (C++ function),

174
vtkm::rendering::View3D (C++ class), 174
vtkm::rendering::View3D::Paint (C++ function),

174
vtkm::rendering::View::GetBackgroundColor

(C++ function), 173
vtkm::rendering::View::GetCamera (C++ func-

tion), 172, 173
vtkm::rendering::View::GetCanvas (C++ func-

tion), 172
vtkm::rendering::View::GetMapper (C++ func-

tion), 172
vtkm::rendering::View::GetScene (C++ function),

Index 461

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

172
vtkm::rendering::View::Paint (C++ function), 173
vtkm::rendering::View::SaveAs (C++ function),

173
vtkm::rendering::View::SetBackgroundColor

(C++ function), 173
vtkm::rendering::View::SetCamera (C++ func-

tion), 173
vtkm::rendering::View::SetForegroundColor

(C++ function), 173
vtkm::rendering::View::SetScene (C++ function),

172
vtkm::RMagnitude (C++ function), 383
vtkm::Round (C++ function), 376, 377
vtkm::RSqrt (C++ function), 374
vtkm::SignBit (C++ function), 377
vtkm::Sin (C++ function), 380
vtkm::SinH (C++ function), 380
vtkm::SolveLinearSystem (C++ function), 386
vtkm::source

variable, 14
vtkm::Sphere (C++ class), 222
vtkm::Sphere::Classify (C++ function), 223
vtkm::Sphere::Contains (C++ function), 222
vtkm::Sphere::GetCenter (C++ function), 223
vtkm::Sphere::GetRadius (C++ function), 223
vtkm::Sphere::Gradient (C++ function), 223
vtkm::Sphere::IsValid (C++ function), 222
vtkm::Sphere::SetCenter (C++ function), 223
vtkm::Sphere::SetRadius (C++ function), 223
vtkm::Sphere::Sphere (C++ function), 222, 223
vtkm::Sphere::Value (C++ function), 223
vtkm::Sqrt (C++ function), 374, 375
vtkm::Tan (C++ function), 381
vtkm::TanH (C++ function), 381
vtkm::Transform (C++ function), 303
vtkm::TriangleNormal (C++ function), 383
vtkm::Tuple (C++ class), 300
vtkm::TupleElement (C++ type), 301
vtkm::TupleSize (C++ type), 300
vtkm::TwoPi (C++ function), 381
vtkm::TypeListAll (C++ type), 290
vtkm::TypeListBaseC (C++ type), 290
vtkm::TypeListCommon (C++ type), 290
vtkm::TypeListField (C++ type), 289
vtkm::TypeListFieldScalar (C++ type), 289
vtkm::TypeListFieldVec2 (C++ type), 289
vtkm::TypeListFieldVec3 (C++ type), 289
vtkm::TypeListFieldVec4 (C++ type), 289
vtkm::TypeListFloatVec (C++ type), 289
vtkm::TypeListId (C++ type), 289
vtkm::TypeListId2 (C++ type), 289
vtkm::TypeListId3 (C++ type), 289
vtkm::TypeListId4 (C++ type), 289

vtkm::TypeListIdComponent (C++ type), 289
vtkm::TypeListIndex (C++ type), 289
vtkm::TypeListScalarAll (C++ type), 290
vtkm::TypeListVecAll (C++ type), 290
vtkm::TypeListVecCommon (C++ type), 290
vtkm::TypeTraits (C++ class), 280
vtkm::TypeTraits::DimensionalityTag (C++

type), 280
vtkm::TypeTraits::NumericTag (C++ type), 280
vtkm::TypeTraits::ZeroInitialization (C++

function), 281
vtkm::TypeTraitsIntegerTag (C++ struct), 281
vtkm::TypeTraitsRealTag (C++ struct), 281
vtkm::TypeTraitsScalarTag (C++ struct), 281
vtkm::TypeTraitsUnknownTag (C++ struct), 281
vtkm::TypeTraitsVectorTag (C++ struct), 281
vtkm::UInt16 (C++ type), 26
vtkm::UInt32 (C++ type), 27
vtkm::UInt64 (C++ type), 27
vtkm::UInt8 (C++ type), 26
vtkm::Vec (C++ class), 265
vtkm::Vec2f (C++ type), 27
vtkm::Vec2f_32 (C++ type), 28
vtkm::Vec2f_64 (C++ type), 28
vtkm::Vec2i (C++ type), 29
vtkm::Vec2i_16 (C++ type), 30
vtkm::Vec2i_32 (C++ type), 30
vtkm::Vec2i_64 (C++ type), 30
vtkm::Vec2i_8 (C++ type), 29
vtkm::Vec2ui (C++ type), 29
vtkm::Vec2ui_16 (C++ type), 30
vtkm::Vec2ui_32 (C++ type), 30
vtkm::Vec2ui_64 (C++ type), 30
vtkm::Vec2ui_8 (C++ type), 30
vtkm::Vec3f (C++ type), 27
vtkm::Vec3f_32 (C++ type), 28
vtkm::Vec3f_64 (C++ type), 28
vtkm::Vec3i (C++ type), 29
vtkm::Vec3i_16 (C++ type), 30
vtkm::Vec3i_32 (C++ type), 31
vtkm::Vec3i_64 (C++ type), 31
vtkm::Vec3i_8 (C++ type), 30
vtkm::Vec3ui (C++ type), 29
vtkm::Vec3ui_16 (C++ type), 31
vtkm::Vec3ui_32 (C++ type), 31
vtkm::Vec3ui_64 (C++ type), 31
vtkm::Vec3ui_8 (C++ type), 30
vtkm::Vec4f (C++ type), 27
vtkm::Vec4f_32 (C++ type), 28
vtkm::Vec4f_64 (C++ type), 28
vtkm::Vec4i (C++ type), 29
vtkm::Vec4i_16 (C++ type), 31
vtkm::Vec4i_32 (C++ type), 31
vtkm::Vec4i_64 (C++ type), 32

462 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

vtkm::Vec4i_8 (C++ type), 31
vtkm::Vec4ui (C++ type), 29
vtkm::Vec4ui_16 (C++ type), 31
vtkm::Vec4ui_32 (C++ type), 31
vtkm::Vec4ui_64 (C++ type), 32
vtkm::Vec4ui_8 (C++ type), 31
vtkm::VecC (C++ class), 268
vtkm::VecCConst (C++ class), 268
vtkm::VecFromPortal (C++ class), 270
vtkm::VecFromPortalPermute (C++ class), 270
vtkm::VecTraits (C++ struct), 283
vtkm::VecTraits::BaseComponentType (C++ type),

283
vtkm::VecTraits::ComponentType (C++ type), 283
vtkm::VecTraits::CopyInto (C++ function), 285
vtkm::VecTraits::GetComponent (C++ function),

284
vtkm::VecTraits::GetNumberOfComponents (C++

function), 284
vtkm::VecTraits::HasMultipleComponents (C++

type), 284
vtkm::VecTraits::IsSizeStatic (C++ type), 284
vtkm::VecTraits::NUM_COMPONENTS (C++ member),

285
vtkm::VecTraits::ReplaceBaseComponentType

(C++ type), 284
vtkm::VecTraits::ReplaceComponentType (C++

type), 284
vtkm::VecTraits::SetComponent (C++ function),

284
vtkm::VecTraitsTagMultipleComponents (C++

struct), 285
vtkm::VecTraitsTagSingleComponent (C++ struct),

285
vtkm::VecTraitsTagSizeStatic (C++ struct), 285
vtkm::VecTraitsTagSizeVariable (C++ struct),

285
vtkm::VecVariable (C++ class), 269
vtkm::worklet::Keys (C++ class), 349
vtkm::worklet::Keys::BuildArrays (C++ func-

tion), 350
vtkm::worklet::Keys::BuildArraysInPlace

(C++ function), 350
vtkm::worklet::Keys::GetInputRange (C++ func-

tion), 350
vtkm::worklet::Keys::GetNumberOfValues (C++

function), 351
vtkm::worklet::Keys::GetOffsets (C++ function),

350
vtkm::worklet::Keys::GetSortedValuesMap

(C++ function), 350
vtkm::worklet::Keys::GetUniqueKeys (C++ func-

tion), 350
vtkm::worklet::Keys::Keys (C++ function), 350

vtkm::worklet::WorkletCellNeighborhood (C++
class), 335

vtkm::worklet::WorkletCellNeighborhood::_1
(C++ struct), 337

vtkm::worklet::WorkletCellNeighborhood::AtomicArrayInOut
(C++ struct), 336

vtkm::worklet::WorkletCellNeighborhood::Boundary
(C++ struct), 337

vtkm::worklet::WorkletCellNeighborhood::CellSetIn
(C++ struct), 335

vtkm::worklet::WorkletCellNeighborhood::Device
(C++ struct), 338

vtkm::worklet::WorkletCellNeighborhood::ExecObject
(C++ struct), 337

vtkm::worklet::WorkletCellNeighborhood::FieldIn
(C++ struct), 335

vtkm::worklet::WorkletCellNeighborhood::FieldInNeighborhood
(C++ struct), 335

vtkm::worklet::WorkletCellNeighborhood::FieldInOut
(C++ struct), 336

vtkm::worklet::WorkletCellNeighborhood::FieldOut
(C++ struct), 336

vtkm::worklet::WorkletCellNeighborhood::InputIndex
(C++ struct), 337

vtkm::worklet::WorkletCellNeighborhood::OutputIndex
(C++ struct), 338

vtkm::worklet::WorkletCellNeighborhood::ThreadIndices
(C++ struct), 338

vtkm::worklet::WorkletCellNeighborhood::VisitIndex
(C++ struct), 337

vtkm::worklet::WorkletCellNeighborhood::WholeArrayIn
(C++ struct), 336

vtkm::worklet::WorkletCellNeighborhood::WholeArrayInOut
(C++ struct), 336

vtkm::worklet::WorkletCellNeighborhood::WholeArrayOut
(C++ struct), 336

vtkm::worklet::WorkletCellNeighborhood::WholeCellSetIn
(C++ struct), 337

vtkm::worklet::WorkletCellNeighborhood::WorkIndex
(C++ struct), 337

vtkm::worklet::WorkletMapField (C++ class), 318
vtkm::worklet::WorkletMapField::_1 (C++

struct), 319
vtkm::worklet::WorkletMapField::AtomicArrayInOut

(C++ struct), 319
vtkm::worklet::WorkletMapField::Device (C++

struct), 320
vtkm::worklet::WorkletMapField::ExecObject

(C++ struct), 319
vtkm::worklet::WorkletMapField::FieldIn

(C++ struct), 318
vtkm::worklet::WorkletMapField::FieldInOut

(C++ struct), 318
vtkm::worklet::WorkletMapField::FieldOut

Index 463

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(C++ struct), 318
vtkm::worklet::WorkletMapField::InputIndex

(C++ struct), 320
vtkm::worklet::WorkletMapField::OutputIndex

(C++ struct), 320
vtkm::worklet::WorkletMapField::ThreadIndices

(C++ struct), 320
vtkm::worklet::WorkletMapField::VisitIndex

(C++ struct), 320
vtkm::worklet::WorkletMapField::WholeArrayIn

(C++ struct), 319
vtkm::worklet::WorkletMapField::WholeArrayInOut

(C++ struct), 319
vtkm::worklet::WorkletMapField::WholeArrayOut

(C++ struct), 319
vtkm::worklet::WorkletMapField::WholeCellSetIn

(C++ struct), 319
vtkm::worklet::WorkletMapField::WorkIndex

(C++ struct), 320
vtkm::worklet::WorkletPointNeighborhood

(C++ class), 332
vtkm::worklet::WorkletPointNeighborhood::_1

(C++ struct), 334
vtkm::worklet::WorkletPointNeighborhood::AtomicArrayInOut

(C++ struct), 333
vtkm::worklet::WorkletPointNeighborhood::Boundary

(C++ struct), 334
vtkm::worklet::WorkletPointNeighborhood::CellSetIn

(C++ struct), 332
vtkm::worklet::WorkletPointNeighborhood::Device

(C++ struct), 335
vtkm::worklet::WorkletPointNeighborhood::ExecObject

(C++ struct), 333
vtkm::worklet::WorkletPointNeighborhood::FieldIn

(C++ struct), 332
vtkm::worklet::WorkletPointNeighborhood::FieldInNeighborhood

(C++ struct), 332
vtkm::worklet::WorkletPointNeighborhood::FieldInOut

(C++ struct), 332
vtkm::worklet::WorkletPointNeighborhood::FieldOut

(C++ struct), 332
vtkm::worklet::WorkletPointNeighborhood::InputIndex

(C++ struct), 334
vtkm::worklet::WorkletPointNeighborhood::OutputIndex

(C++ struct), 334
vtkm::worklet::WorkletPointNeighborhood::ThreadIndices

(C++ struct), 335
vtkm::worklet::WorkletPointNeighborhood::VisitIndex

(C++ struct), 334
vtkm::worklet::WorkletPointNeighborhood::WholeArrayIn

(C++ struct), 333
vtkm::worklet::WorkletPointNeighborhood::WholeArrayInOut

(C++ struct), 333
vtkm::worklet::WorkletPointNeighborhood::WholeArrayOut

(C++ struct), 333
vtkm::worklet::WorkletPointNeighborhood::WholeCellSetIn

(C++ struct), 333
vtkm::worklet::WorkletPointNeighborhood::WorkIndex

(C++ struct), 334
vtkm::worklet::WorkletReduceByKey (C++ class),

346
vtkm::worklet::WorkletReduceByKey::_1 (C++

struct), 348
vtkm::worklet::WorkletReduceByKey::AtomicArrayInOut

(C++ struct), 347
vtkm::worklet::WorkletReduceByKey::Device

(C++ struct), 349
vtkm::worklet::WorkletReduceByKey::ExecObject

(C++ struct), 348
vtkm::worklet::WorkletReduceByKey::InputIndex

(C++ struct), 349
vtkm::worklet::WorkletReduceByKey::KeysIn

(C++ struct), 346
vtkm::worklet::WorkletReduceByKey::OutputIndex

(C++ struct), 349
vtkm::worklet::WorkletReduceByKey::ReducedValuesIn

(C++ struct), 347
vtkm::worklet::WorkletReduceByKey::ReducedValuesInOut

(C++ struct), 347
vtkm::worklet::WorkletReduceByKey::ReducedValuesOut

(C++ struct), 346
vtkm::worklet::WorkletReduceByKey::ThreadIndices

(C++ struct), 349
vtkm::worklet::WorkletReduceByKey::ValueCount

(C++ struct), 348
vtkm::worklet::WorkletReduceByKey::ValuesIn

(C++ struct), 346
vtkm::worklet::WorkletReduceByKey::ValuesInOut

(C++ struct), 346
vtkm::worklet::WorkletReduceByKey::ValuesOut

(C++ struct), 346
vtkm::worklet::WorkletReduceByKey::VisitIndex

(C++ struct), 348
vtkm::worklet::WorkletReduceByKey::WholeArrayIn

(C++ struct), 347
vtkm::worklet::WorkletReduceByKey::WholeArrayInOut

(C++ struct), 347
vtkm::worklet::WorkletReduceByKey::WholeArrayOut

(C++ struct), 347
vtkm::worklet::WorkletReduceByKey::WholeCellSetIn

(C++ struct), 348
vtkm::worklet::WorkletReduceByKey::WorkIndex

(C++ struct), 348
vtkm::worklet::WorkletVisitCellsWithPoints

(C++ class), 322
vtkm::worklet::WorkletVisitCellsWithPoints::_1

(C++ struct), 324
vtkm::worklet::WorkletVisitCellsWithPoints::AtomicArrayInOut

464 Index

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

(C++ struct), 324
vtkm::worklet::WorkletVisitCellsWithPoints::CellSetIn

(C++ struct), 322
vtkm::worklet::WorkletVisitCellsWithPoints::CellShape

(C++ struct), 324
vtkm::worklet::WorkletVisitCellsWithPoints::Device

(C++ struct), 326
vtkm::worklet::WorkletVisitCellsWithPoints::ExecObject

(C++ struct), 324
vtkm::worklet::WorkletVisitCellsWithPoints::FieldInCell

(C++ struct), 322
vtkm::worklet::WorkletVisitCellsWithPoints::FieldInIncident

(C++ struct), 323
vtkm::worklet::WorkletVisitCellsWithPoints::FieldInOut

(C++ struct), 323
vtkm::worklet::WorkletVisitCellsWithPoints::FieldInOutCell

(C++ struct), 323
vtkm::worklet::WorkletVisitCellsWithPoints::FieldInPoint

(C++ struct), 322
vtkm::worklet::WorkletVisitCellsWithPoints::FieldInVisit

(C++ struct), 323
vtkm::worklet::WorkletVisitCellsWithPoints::FieldOut

(C++ struct), 323
vtkm::worklet::WorkletVisitCellsWithPoints::FieldOutCell

(C++ struct), 323
vtkm::worklet::WorkletVisitCellsWithPoints::InputIndex

(C++ struct), 325
vtkm::worklet::WorkletVisitCellsWithPoints::OutputIndex

(C++ struct), 325
vtkm::worklet::WorkletVisitCellsWithPoints::PointCount

(C++ struct), 325
vtkm::worklet::WorkletVisitCellsWithPoints::PointIndices

(C++ struct), 325
vtkm::worklet::WorkletVisitCellsWithPoints::ThreadIndices

(C++ struct), 326
vtkm::worklet::WorkletVisitCellsWithPoints::VisitIndex

(C++ struct), 325
vtkm::worklet::WorkletVisitCellsWithPoints::WholeArrayIn

(C++ struct), 323
vtkm::worklet::WorkletVisitCellsWithPoints::WholeArrayInOut

(C++ struct), 324
vtkm::worklet::WorkletVisitCellsWithPoints::WholeArrayOut

(C++ struct), 324
vtkm::worklet::WorkletVisitCellsWithPoints::WholeCellSetIn

(C++ struct), 324
vtkm::worklet::WorkletVisitCellsWithPoints::WorkIndex

(C++ struct), 325
vtkm::worklet::WorkletVisitPointsWithCells

(C++ class), 327
vtkm::worklet::WorkletVisitPointsWithCells::_1

(C++ struct), 329
vtkm::worklet::WorkletVisitPointsWithCells::AtomicArrayInOut

(C++ struct), 328
vtkm::worklet::WorkletVisitPointsWithCells::CellCount

(C++ struct), 329
vtkm::worklet::WorkletVisitPointsWithCells::CellIndices

(C++ struct), 329
vtkm::worklet::WorkletVisitPointsWithCells::CellSetIn

(C++ struct), 327
vtkm::worklet::WorkletVisitPointsWithCells::Device

(C++ struct), 330
vtkm::worklet::WorkletVisitPointsWithCells::ExecObject

(C++ struct), 329
vtkm::worklet::WorkletVisitPointsWithCells::FieldInCell

(C++ struct), 327
vtkm::worklet::WorkletVisitPointsWithCells::FieldInIncident

(C++ struct), 327
vtkm::worklet::WorkletVisitPointsWithCells::FieldInOut

(C++ struct), 328
vtkm::worklet::WorkletVisitPointsWithCells::FieldInOutPoint

(C++ struct), 328
vtkm::worklet::WorkletVisitPointsWithCells::FieldInPoint

(C++ struct), 327
vtkm::worklet::WorkletVisitPointsWithCells::FieldInVisit

(C++ struct), 327
vtkm::worklet::WorkletVisitPointsWithCells::FieldOut

(C++ struct), 328
vtkm::worklet::WorkletVisitPointsWithCells::FieldOutPoint

(C++ struct), 327
vtkm::worklet::WorkletVisitPointsWithCells::InputIndex

(C++ struct), 330
vtkm::worklet::WorkletVisitPointsWithCells::OutputIndex

(C++ struct), 330
vtkm::worklet::WorkletVisitPointsWithCells::ThreadIndices

(C++ struct), 330
vtkm::worklet::WorkletVisitPointsWithCells::VisitIndex

(C++ struct), 329
vtkm::worklet::WorkletVisitPointsWithCells::WholeArrayIn

(C++ struct), 328
vtkm::worklet::WorkletVisitPointsWithCells::WholeArrayInOut

(C++ struct), 328
vtkm::worklet::WorkletVisitPointsWithCells::WholeArrayOut

(C++ struct), 328
vtkm::worklet::WorkletVisitPointsWithCells::WholeCellSetIn

(C++ struct), 329
vtkm::worklet::WorkletVisitPointsWithCells::WorkIndex

(C++ struct), 329
VTKM_ASSERT (C macro), 205
VTKm_ENABLE_BENCHMARKS

variable, 11
VTKm_ENABLE_CUDA

variable, 11, 14
VTKm_ENABLE_EXAMPLES

variable, 11
VTKm_ENABLE_KOKKOS

variable, 11
VTKm_ENABLE_Kokkos

variable, 15

Index 465

The VTK-m User's Guide, Release 2.1.0-241-g98168fc2

VTKm_ENABLE_MPI
variable, 11, 15

VTKm_ENABLE_OPENMP
variable, 11, 15

VTKm_ENABLE_RENDERING
variable, 11, 14, 15

VTKm_ENABLE_TBB
variable, 11, 15

VTKm_ENABLE_TESTING
variable, 11

VTKm_ENABLE_TUTORIALS
variable, 11

VTKm_FOUND
variable, 14

VTKM_IS_ARRAY_HANDLE (C macro), 245
VTKM_IS_CELL_SHAPE_TAG (C macro), 392
VTKM_IS_LIST (C macro), 291
VTKM_LOG_F (C macro), 312
VTKM_LOG_IF_F (C macro), 313
VTKM_LOG_IF_S (C macro), 313
VTKM_LOG_S (C macro), 312
VTKM_LOG_SCOPE (C macro), 314
VTKM_LOG_SCOPE_FUNCTION (C macro), 314
VTKm_USE_64BIT_IDS

variable, 11, 26
VTKm_USE_DOUBLE_PRECISION
variable, 11, 26, 27

VTKm_VERSION
variable, 14, 33

VTKM_VERSION (C macro), 33
VTKm_VERSION_FULL

variable, 14, 33
VTKM_VERSION_FULL (C macro), 33
VTKm_VERSION_MAJOR

variable, 14, 33
VTKM_VERSION_MAJOR (C macro), 33
VTKm_VERSION_MINOR

variable, 14, 33
VTKM_VERSION_MINOR (C macro), 33
VTKm_VERSION_PATCH

variable, 14, 33
VTKM_VERSION_PATCH (C macro), 33
vtkmGenericCellShapeMacro (C macro), 393

W
warp

filter, 124
wireframe

rendering, 176
worklet, 231, 317
cell neighborhood, 335
control signature, 248
creating, 247, 317
error handling, 367

execution signature, 248
field map, 317, 318
input domain, 249
invoke, 249
neighborhood, 331
point neighborhood, 317, 332
reduce by key, 317, 345
topology map, 317
visit cells, 317, 322
visit points, 317, 327

world coordinates
cell, 396

write file, 79

Z
zfp

filter, 160
zoom

camera rendering, 186
mouse, 193
rendering, 193

466 Index

	I Getting Started
	Introduction
	How to Use This Guide

	Building and Installing VTK‑m
	Getting VTK‑m
	Configuring VTK‑m
	Building VTK‑m
	Linking to VTK‑m

	Quick Start
	Initialize
	Reading a File
	Running a Filter
	Rendering an Image
	The Full Example
	Build Configuration

	II Using VTK‑m
	Base Types
	Floating Point Types
	Integer Types
	Vector Types

	VTK-m Version
	Initialization
	Data Sets
	Building Data Sets
	Creating Uniform Grids
	Creating Rectilinear Grids
	Creating Explicit Meshes
	Add Fields

	Cell Sets
	Structured Cell Sets
	Explicit Cell Sets
	Cell Set Permutations
	Cell Set Extrude
	Unknown Cell Sets

	Fields
	Coordinate Systems
	Partitioned Data Sets

	File I/O
	Readers
	Legacy VTK File Reader
	Image Readers

	Writers
	Legacy VTK File Writer
	Image Writers

	Running Filters
	Basic Filter Operation
	Advanced Field Management
	Input Fields
	Passing Fields from Input to Output
	Output Field Names

	Provided Filters
	Cleaning Grids
	Clean Grid

	Connected Components
	Cell Connectivity
	Classification Field on Image Data

	Contouring
	Contour
	Slice
	Clip with Field
	Clip with Implicit Function

	Density Estimation
	Histogram
	Particle Density
	Nearest Grid Point
	Cloud in Cell

	Statistics

	Entity Extraction
	External Faces
	Extract Geometry
	Extract Points
	Extract Structured
	Ghost Cell Removal
	Threshold

	Field Conversion
	Cell Average
	Point Average

	Field Transform
	Composite Vectors
	Cylindrical Coordinate System Transform
	Field to Colors
	Generate Ids
	Log Values
	Point Elevation
	Point Transform
	Spherical Coordinate System Transform
	Warp

	Flow Analysis
	Streamlines
	Pathlines
	Stream Surface
	Lagrangian Coherent Structures

	Geometry Refinement
	Convert to a Point Cloud
	Shrink
	Split Sharp Edges
	Tetrahedralize
	Triangulate
	Tube
	Vertex Clustering

	Mesh Information
	Cell Size Measurements
	Ghost Cell Classification
	Mesh Quality Metrics

	Multi-Block
	AMR Arrays
	Merge Data Sets

	Resampling
	Histogram Sampling
	Probe

	Vector Analysis
	Cross Product
	Dot Product
	Gradients
	Surface Normals
	Vector Magnitude

	ZFP Compression

	Rendering
	Scenes and Actors
	Canvas
	Mappers
	Views
	Changing Rendering Modes
	Manipulating the Camera
	Common Camera Controls
	Pan
	Zoom

	2D Camera Mode
	View Range

	3D Camera Mode
	Position and Orientation
	Movement
	Reset

	Interactive Rendering
	Rendering Into a GUI
	Camera Movement
	Interactive Rotate
	Interactive Pan
	Interactive Zoom

	Color Tables

	Error Handling
	Runtime Error Exceptions
	Asserting Conditions
	Compile Time Checks

	Managing Devices
	Device Adapter Tag
	Device Adapter Id
	Runtime Device Tracker
	Specifying Devices

	Timers
	Implicit Functions
	Plane
	Sphere
	Cylinder
	Box
	Frustum
	General Implicit Functions

	III Developing Algorithms
	General Approach
	Package Structure
	Function and Method Environment Modifiers

	Basic Array Handles
	Creating Array Handles
	Deep Array Copies
	The Hidden Second Template Parameter
	Mutability

	Simple Worklets
	Control Signature
	Execution Signature
	Input Domain
	Worklet Operator
	Invoking a Worklet
	Preview of More Complex Worklets

	Basic Filter Implementation

	IV Advanced Development
	Advanced Types
	Single Number Types
	Vector Types
	Vec-like Types
	C-Array Vec Wrapper
	Variable-Sized Vec
	Vecs from Portals
	Point Coordinate Vec

	Range
	Bounds
	Index Ranges
	Traits
	Type Traits
	Vector Traits

	List Templates
	Building Lists
	Type Lists
	Querying Lists
	Is a List
	List Size
	List Contains
	List Indices

	Operating on Lists
	Appending Lists
	Intersecting Lists
	Resolve a Template with all Types in a List
	Transform Each Type in a List
	Conditionally Removing Items from a List
	Combine all Pairs of Two Lists
	Call a Function For Each Type in a List

	Pair
	Tuple
	Defining and Constructing
	Querying
	For Each Tuple Value
	Transform Each Tuple Value
	Apply

	Error Codes

	Logging
	Initializing Logging
	Logging Levels
	Log Entries
	Basic Log Entries
	Conditional Log Entries
	Scoped Log Entries

	Helper Functions

	Worklet Types
	Field Map
	Topology Map
	Visit Cells with Points
	Visit Points with Cells

	Neighborhood Mapping
	Point Neighborhood
	Cell Neighborhood
	Neighborhood Information
	Convolving Small Kernels

	Reduce by Key
	WorkletReduceByKey Reference
	Key Objects
	Reduce by Key Examples

	Extended Filter Implementations
	Deriving Fields from other Fields
	Deriving Fields from Topology
	Data Set Filters
	Data Set with Field Filters

	Worklet Error Handling
	Math
	Basic Math
	Exponentials
	Non-finites
	Polynomials
	Remainders and Quotient
	Rounding and Precision
	Sign
	Trigonometry
	Miscellaneous

	Vector Analysis
	Matrices
	Newton’s Method

	Working with Cells
	Cell Shape Tags and Ids
	Converting Between Tags and Identifiers
	Cell Traits

	Parametric and World Coordinates
	Interpolation
	Derivatives
	Edges and Faces

	Memory Layout of Array Handles
	Basic Memory Layout
	Structure of Arrays
	Strided Arrays
	Runtime Vec Arrays

	V Core Development
	VI Appendix
	Acknowledgements
	Contributors
	Funding

	License
	Index
	Index

